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P R E F A C E.

To examine the varied relations of necessary truth , and to trace through its suc

cessive developements, the simple principle to its ultimate result, is the peculiar

province of Mathematical Analysis. Aided by that refined system , which the in

genuity of modern calculators has elicited, and to which the term Analytics is now

almost exclusively appropriated, it pursues trains of reasoning, which, from their

length and intricacy, would resist for ever the unassisted efforts of human sagacity.

To what cause are we to attribute this surprising advantage ? One, undoubtedly the

most obvious, consists in the nature of the ideas themselves, whose relations form

the object of investigation — and the accuracy with which they are defined . This is

equally indeed the property of every branch of Mathematical enquiry. Three causes

however chiefly appear to have given so vast a superiority to Analysis, as an instru

ment of reason . Of these, the accurate simplicity of its language claims the first

place. An arbitrary symbol can neither convey, nor excite any idea foreign to its

original definition . This immutability, no less than the symmetry of its notation,

(which should ever be guarded with a jealousy commensurate to its vital importance,)

facilitates the translation of an expression into common language at any stage of an

operation, —disburdens the memory of all the load of the previous steps,—and at the

same time, affords it a considerable assistance in retaining the results. Another, and

perhaps not less considerable cause , is to be found in the conciseness of that notation .

Every train of reasoning implies an exercise of the judgement, which, being an

operation of the mind, deciding on the agreement or disagreement of ideas succes

sively presented to it, it is reasonable to presume will be more correct, in proportion

as the ideas compared follow each other more closely ; provided the succession be not

so rapid as to cause confusion . Were an Analytical operation of any complexity

converted into common language, in all its detail, the mind, after acquiring a clear

conception of one part of the related ideas, must suspend its decision until it could

obtain an equally perspicuous one of the remainder of the proposition ; and in so long

an interval as this must occupy, the impression of the former ideas would necessarily

have faded in some degree from the memory, unless fixed by an expense of time and

attention, sufficient to deter any one from the employment of such means of dis

covery. It is the spirit of this symbolic language, by that mechanical tact, (so much

in unison with all our faculties ,) which carries the eye at one glance through the

a
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most intricate modifications of quantity, to condense pages into lines, and volumes

into pages ; shortening the road to discovery, and preserving the mind unfatigued by

continued efforts of attention to the minor parts, that it may exert its whole vigor on

those which are more important.

The last cause we have occasion to notice is, that Analysis, by separating the

difficulties of a question, overcomes those which appear alınost insuperable when

combined, or at least, reducing each to its least terms, leaves them as the acknow

ledged landmarks of its progress, -open to approach on all sides, should ulterior dis

covery
furnish

any rational hope of their removal. Meanwhile that progress continues

unimpeded . Simple relations are found to exist between the most refractory

functions, and even when the difficulties themselves prove invincible, their nature at

least becomes thoroughly understood , and means of evading them almost universally

pointed out.

That the preceding observations are not founded on bare speculation, the whole

history of Analytical Science will abundantly evince . It is our intention , in the

following pages of this Preface, to give a general outline of that history up to the

present time. From the space allotted to it, it is evident that little else than the

most prominent points in so wide a field can be selected for observation. Faint,

however, as it is, the subject cannot but communicate to it some portion of its in

terest; as well as the reflection, that, (with the exception of one branch of it * ) the

history of the more modern discoveries has hitherto unfortunately found little place

in our language of

Symbolic reasoning appears to have been ushered into the world under unfavour

able auspices, and to have been regarded in its infancy with an eye of extreme

jealousy. And, indeed, if we consider the rudeness of its first attempts, the poverty

of its first resources, and the lavish want of economy in their employment, we shall

find little reason to wonder, that for a long period, the new methods were looked

upon as inelegant, although serviceable auxiliaries of the ancient processes, to be

regularly discarded after serving their turn . To employ as many symbols of operation

and as few of quantity as possible, is a precept which is now found invariably to

* The calculus of variations, the history of whose rise and progress has been ably combined with

the exposition of its theory , in a late work , " On Isoperimetrical Problems. ”

+ The admirable review of the Mecanique Celeste (Ed . Rev. N° 22.) will still be fresh in the minds

of our readers. But it should be recollected , that the Author of that Essay confines his attention entirely

to the subject of Analytical dynamics ; referring to the discoveries in the integral calculus merely as

connected with that subject, and that too very cursorily. Our business is exclusively with the pure,

Analytics,
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ensure elegance and brevity. The very reverse of this principle forms the character

of symbolic analysis, up to within fifty years of the present date.

The first and most natural object of research in the Algebraic calculus, was the

resolution of equations, involving simply the powers of the unknown quantity. As

far as the fourth degree no difficulty occurred, but beyond this, not a step has yet

been made. Almost every Analyst of eminence has applied his ingenuity to the

accomplishment of the general problem , but without success ; and after more than

two centuries, during which every other branch of Analytics has been advancing with

unrivalled rapidity, no progress whatever has been made in this . This, it must be

allowed , presents little prospect of success to future researches on the subject ; yet

ought not the difficulty to be considered insurmountable, until opinion has been

confirmed by demonstration . Delambre notices a Memoir presented to the National

Institute by M. Ruffini, in which he proposes a proof of the impossibility of the

resolution of equations above the fourth degree. If this demonstration be correct, it

will render an important service to Algebraists, by diverting them from a pursuit

which must necessarily be unsuccessful. The work, however, if yet published, has

not arrived in this country . Recent French publications are not easily procured ,

nor is it surprising that to obtain those of the German Analysts is almost impossible,

when Delambre regrets their scarcity even in France.

Although to express in finite algebraic terms, the root of any proposed equation

be impracticable, yet the inverse function of any expression, such as

a + bx + cx ? + d x + &c.

may readily be exhibited in an infinite series . When the difficulty of solving

equations above the fourth degree was perceived, it was natural to seek rapid and

convenient approximations, and accordingly, three of our countrymen , Newton,

Ralphson, and Halley, produced nearly at the same time, modes of approximation

which have since received various improvements. All such researches, when sym

bolically conducted, and without regard to the numerical value of the symbols, lead

at the bottom to series of greater or less complexity. It seems to have been in

following up this idea, that Lagrange was first conducted to that very general reso

lution of all equations in the series which bears his name ; a series which has been

productive of discovery wherever it has been applied, and whose fecundity appears

yet far from being exhausted . It is thus that the most distant parts of Analysis

hang together, nor is it possible to assign the point, however remote or unexpected ,

in which any proposed career of research may not ultimately terminate. This series

made its first appearance in the Mem. de l'Acad . Berlin, 1767-8 * . together with

* The demonstration there given is defective in rigour. A better was given in Note XI. of the

" Traité de la resolution des equations numeriques. ” Lagrange . But the most elegant is that of Laplace,

to
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the most systematic method of approximating to the roots of numerical equations

which has yet been given . The method has this considerable advantage over all

others, that, in all cases where the root is an integer, the formula of approximation

will give it exactly, and in many where it is a surd, the continued fraction employed

will point out the rational number of which it is the root. Though the complete

solutions of equations is nearly hopeless, it might perhaps be of some advantage, and

certainly of little difficulty, supposing the roots of equations known, to investigate

what change would take place if one or more of the coefficients were augmented or

diminished by any small quantity.

To trace the history of the differential calculus through the cloud of dispute and

national acrimony, which has been thrown over its origin , would answer little pur

pose. It is a lamentable consideration , that that discovery which has most of any

done honour to the genius of man, should nevertheless bring with it a train of re

flections so little to the credit of his heart.

Discovered by Fermat, concinnated and rendered analytical by Newton , and

enriched by Leibnitz with a powerful and comprehensive notation , it was presently

seen that the new calculus might aspire to the loftiest ends. But, as if the soil of

this country were unfavourable to its cultivation , it soon drooped and almost faded

into neglect, and we have now to re- import the exotic, with nearly a century of

foreign improvement, and to render it once more indigenous among us.

The most prominent feature of this calculus, is the theory of the developement of

functions. The theorem which has immortalized the name of Brook Taylor, forms

its foundation. Elicited by its Author from a formula which at first sight seemed

independent of it, by a method not remarkable for its rigour, it seems to have been

long considered in the light of a very general formula of interpolation. Lagrange

and Arbogast have, as it were , invented it anew, and established it as the true basis

of the differential calculus. The theory of Lagrange is to be found in a Memoir

among those of the Acad. de Berlin. 1772, which contains the independent demon

stration of Taylor's theorem — in the “ Theorie des fonctions Analytiques, ” wherein

he exhibits its application to the various branches of the differential calculus, inde

pendently on any consideration of limits, infinitesimals or velocities - and lastly, in

the Journal de l' Ecole Polytechnique. Cah . XII. ( 1802.) and in the “ Lecons sur

le calcul des Fonctions. " The ideas of Arbogast are contained in a Manuscript

to be found in the Mem. de l' Acad. des Sciences, Paris, 1777 ; in Lacroix's Calc. Diff. et Int. 2d edit.

Art. 107 ; in the Mecanique Celeste, tom . I. page 172. Adopted (in principle at least ) by Lagrange

in the “ Theorie des Fonct . Analyt . Art . 97 , et suiv . And in our own language, in Mr. Woodhouse's

Trigonometry, 2nd edition . Arbogast has also demonstrated this theorem . See his Calcul des Derivations

Art. 282, et suiv.



PREFACE . V

Here

presented to the Academy of Sciences in the year 1789, and of which the outline is

given in the Preface to his celebrated work on Derivations. Such is the brief account

of the greatest revolution which has yet taken place in Analytical Science .

The operations of the differential calculus once well understood, and rigorously

demonstrated, may be employed in improving the theory which gives rise to them .

The work of Arbogast just alluded to, has shewn to how vast an extent this appli.

cation
may be carried, and how great is the assistance thus rendered . The peculiar

grace of Laplace's Analysis has no where been more beautifully exhibited, than in

his improvement and extension of Lagrange's theorem already mentioned . Nor

should the labours of Paoli in this field pass unnoticed . By the aid of a very re

markable series derived from reverting that of Taylor, he has been able to assign the

developement of any function of a quantity given by any equation whatever, in terms

of a function any how composed of the remaining symbols which enter into that

equation.

The developement of functions has lately been made, under the name of “ Cal

cul des fonctions generatrices,” the foundation of a most elegant theory of finite

differences, of which more hereafter.

Soon after the discovery of the integral calculus, on the discussion of some

problems, between Leibnitz and the Bernouillis, respecting the variation of the

parameters of curves; there occurred certain equations, which, though they satisfied

the conditions, were yet not contained in the complete integral of the equation

whence they were derived. It is somewhat remarkable, considering the manner in

which they first appeared, that their geometrical signification should have remained

so long undiscovered . Brook Taylor, according to Lagrange, was the first who

arrived at a particular solution by differentiating. Clairaut, in a Memoir presented

to the Academy of Sciences at Paris, first remarked, that the equations so found,

satisfy the geometrical conditions proposed. Euler styled them Analytical para

doxes, and shewed how in some cases they might be derived from the differential

equations. But their theory remained unknown, till the year 1772 * ; when

Laplace explained it in a Memoir of the Academy of Sciences, and pointed out the

methods of discovering all the particular solutions of which an equation admits .

This subject was still farther pursued in the Berlin Memoirs, by Lagrange, who

there developes, with great perspicuity the whole theory both Analytical and

* J. Trembley, in the 5th Vol . of the Mem . de Turin, has given a Paper on the derivation of the

complete integral , having given a number of particular solutions. His method consists in multiplying

the equation by these solutions, each raised to an indeterminate power,

b
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Geometrical * . But the most complete exposition of the subject, which has yet

appeared, is to be found in a paper read before the National Institute in the year

1806, by Poisson , in which the theory is extended to partial differential equations,

and also to those of finite differences. He observes of certain partial differential

equations, that they admit of particular solutions equally general with the complete

integral. The Analytical theory, in its present state, is most elegant: still it requires

some farther developements when applied to equations of partial differentials, and to

those of differences, and might perhaps with advantage be applied to equations of

mixed differences. Its Geometrical signification has been beautifully illustrated by

Lagrange ; but the meaning of particular solutions, when they occur in dynamical

problems, which is a question of considerable importance, remains yet undecided .

Poisson has shewn a case, in which the particular solution and the complete integral

are both required, and has produced others, in which only one is necessary.

As the integration of expressions containing one variable is a matter of consider

able importance, and the number of those which are capable of integration, is small ,

when compared with those which do not admit of it ; some attention has been

bestowed onthe classification of those which are similar, and on the reduction of

those which are absolutely different to the least number possible. When this is ac

complished, all that remains for the perfection of this branch of Analysis, is to

calculate tables which shall afford a value of the integral for any value of the variable.

In general, all expressions which do not admit of complete integration, are denomi

nated transcendants. Those which most frequently occur, are logarithmic and cir

cular functions. Tables of these had been long calculated for trigonometrical

purposes, and on the discovery of the integral calculus received a vast addition to

their utility. It was next proposed to admit as known transcendants, all integrals

which could be reduced to the rectification of the conic sections. But, besides the

preposterous idea of limiting an Analytical expression by the properties of a curve,

no tables had been constructed for them, and of course the determination of their

arcs could only be performed by the actual calculation of the integral under con

sideration : nor, indeed, would it have been possible to form useful tables of any

moderate length, without first discussing the properties of the transcendants them

selves in the fullest manner.

The theory of the transcendant Sds, where P is a rational and integral

function of x , and R a quadratic radical of the form ✓ (a + bx + y xº+ 8x? + ext)

has at length by the successive labours of Fagnani, Euler, Landen , and Legendre,

* Fontaine first considered a differential equation as the result of the elimination of a constant be

tween an equation and its differential; thus laying the foundation of the theory of equations, both

differential, and of differences, and also of their particular solutions.

!
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been brought to great perfection. All the transcendents comprised in this extensive

formula, are reducible to three species. Those comprised in the first, are susceptible

of multiplication or division, in the same way as the arcs of circles, by algebraic

operations only. The transcendants of the second species, are susceptible of a similar

multiplication or division, not simply, but when increased or diminished by an

algebraic quantity. This algebraic quantity passes in the third species , into a trans

cendant of the logarithmic or circular kind . Landen has shewn, that an integral of

the first species here enumerated may be reduced to two of the second : so that the

Pdr

number of distinct transcendants comprised in the formula is no more than
R

A vast variety of integral formulæ have, by dint of indefatigable research on

all hands, been reduced to the evaluation of these functions; but to dwell longer on

them, would lead us beyond our limits.

SPRE

S ***.ds" .

The only other species of transcendants of any considerable extent which have

received much discussion, are those contained in the formulæ f&-+. dx , and
on ex . dxn

Kramp, at the end of his Analyse des Refractions, has given a table
1 + E*

of the values of the first of these, ( in the case of n = 2), the integral being taken

between the limits 0.00 , .... 3.00 , .. The definite integrals dependent on the

general form , we shall speak of hereafter. The second formula is ( ultimately) that

of the logarithmic transcendants, on the various orders of which Mr. Spence, in the

year 1809 *, published an Essay, which displays considerable ingenuity, and a depth

of reading rarely to be met with among the Mathematical writers of this country.

A general property there given of the transcendant " L (x), leads to the summation of

some very extraordinary series, which are now in our possession, and which we

cannot forbear mentioning.

Their general (or h) terms are comprised in the formulæ

$ {x .&iov (-1)} + f { ..ε -iov(-1 ) ; f xfír.εiov (-1)} – f {x . £ -ion (-1)}and

in ✓ -1). 2n+ 1

where f is the characteristic of any function whatever op, developeable in integer

powers, either positive or negative, or both.

* Le Gendre published his Exercises de Calcul Integral in 1811 . After having given Landen's

and Euler's values of particular cases of the function " L (1 + x ) he adds, “ Jusqu'a present, on n'est pas

allé plus loin dans la theorie de ces sortes des transcendantes,” page 249. It is probable therefore, that,

owing to our interrupted intercourse with the continent, he had not seen Mr. Spence's work.

+ One singular result of these researches is, the evaluation in terms of the transcendants e, and * ,

of the function

( 1)an + 1 ( 1 ) 2n + 1 ( +)2n + 1

(tan e) . (cot 3 0) . ( tan 50)( tan 50) . &c. ad infinitum .
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Mr. Spence has also given tables ( of some extent,) of the successive values of his

functions, as we have before remarked of Kramp. Too much praise cannot be

bestowed on such examples, which however there is little hope of seeing followed .

The ingenious Analyst who has investigated the properties of some curious function,

can feel little complaisance in calculating a table of its numerical values ; nor is it

for the interest of science, that he should himself be thus employed, though per

fectly familiar with the method of operating on symbols ; he may not perform

extensive arithmetical operations with equal facility and accuracy ; and even should

this not be the case, his labours will at all events meet with little remuneration .

It sometimes happens, that the arbitrary constant does not continue the same

throughout the whole extent of an integral . An instance of this, in the series

e sin e sin 20

C + + & c.

2 1 2

was remarked by Daniel Bernouilli, in the Act. Petrop. Landen also notices, that

this equation is false, when 0 = 0, but without explanation. Other instances occur in

the “ Essay on logarithmic transcendants,” pp. 52-3 ; in Lacroix's Traite de Calcul

&c . 4 " . tom . III . p. 141 , as well as some reflections on this difficult subject in page

483 of the same volume. The cause of these anomalies has not been satisfactorily

explained. If we may hazard a conjecture, it must be looked for in the evanescent

or infinite values of some of the differential coefficients of the function integrated,

causing that function for an instant to change its form . Or, it may have some con

nection with exponentials, since all the instances which have hitherto been adduced

depend on that species of function.

The discovery of partial differentials, has been generally attributed to D'Alembert.

He certainly was the first who applied them to mechanical problems, and perceived

their vast utility in all the more difficult applications of Analysis to physics. But,

if he is to be considered as the inventor, who first solved an equation of the kind,

and who, when their importance was acknowledged, contributed more than any

other to the improvement and progress of this calculus ; the glory of their discovery

will undoubtedly belong to Euler. In the 7th vol. of the Acta Acad. Petropolitanæ ,

is a Memoir of his, entitled, “ Methodus inveniendi æquationes pro infinitis curvis

ejusdem generis.” (A. D. 1735. ) In this paper, and more particularly in a supple

ment, are given the solutions of a number of partial differential equations, of which

the most general is

9 = X % + pR

X being a function of x , and R a function of x and y.

In the latter part of the “ additamentum ad dissertationem ,” he proceeds to



PREFACE . ix

integrate some equations of the second order. The “ Reflexions sur la cause generale

des Vents, ” which contains d'Alembert's first application of partial differential

equations, was not published till the year 1747, and it gained the prize of the

Academy of Berlin in 1746. It would lead us too far to trace, successively, the

various improvements which the new theory underwent in the hands of Euler,

Lagrange, Laplace, Monge, Parseval, and a multitude of great men, whom the

vast importance of the subject incited to its prosecution . Notwithstanding every

exertion , the theory however continues to present a multitude of difficulties. The

analogy which was supposed to exist between the arbitrary functions, which enter

into the integrals of partial differential equations, and the arbitrary constants in

equations of total differentials, is found not to hold beyond the first degree ; after

which, even the number of these arbitrary functions is unknown . Instances have

been adduced, where, besides the arbitrary functions, arbitrary constants also must be

introduced to complete the integral*. The application of definite integrals to the

integration of these equations, presents a wide field of research , as well as the pro

mise of great discoveries. A very curious Memoir of Laplace is to be found in the

Mem. Acad. des Sciences 1779, where this subject, among many others, is discussed

with considerable success t.

In applying the test of integrability to differential equations, some were found,

which could not be made to satisfy the equations of condition . These were for a

long time deemed absurd, until about the year 1784, when Monge perceived their

connection with the theory of curve surfaces, and demonstrated that these equations

admit of solutions, corresponding to the curves of double curvature, formed by the

successive intersections of a curve surface, whose parameter varies ; and discovered

methods of transforming any equation of this kind into an equation of partial

differentials, and also of solving the converse problem . From this, he proposed ob

taining solutions of equations of partial differentials, which are not integrable by

other methods. But the example he gives, shows, that to expect success in such an

enquiry, we must be familiar with space, considered as of three dimensions, and also

with a numerous collection of curves and curve surfaces situated in it ; such conside

rations would but add intricacy to a subject already difficult : hints for the advance

ment of Analysis may be derived from foreign sources, but must always be improved

and cultivated by its own powers. La Croix has given an excellent Analytical

theory of this kind of equations.

To the practice which prevailed in the infancy of Analytics, of proposing to

* Monge ; Savans Etrangers, vol. VII. p . 322.

+ The great desideratum in the integration of an equation by definite integrals is, that whenever it

is susceptible of actual resolution , these integrals should give it - a condition which does not always hold

good. See Laplace. Mémoire sur divers points d'Analyse. Journ . de l'Ecole Polytechnique, Nº. 15 .

с
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Geometers the solution of difficult problems, we owe many of its improvements.

The method of variations, among others, is much indebted to this source. Obliged

however to consult brevity, we must refer to the late treatise on “ Isoperimetrical

Problems," for a full account of its history : a work which being undoubtedly in the

hands of the majority of our readers, must render superfluous all we could say on

that subject. The chief difficulty now consists in distinguishing the maxima from

the minima, which depends in general on the solution of difficult differential

equations. The inverse of the method of variations does not appear to have received

any attention ; it would consist in solving such problems as the following : « Given

a curve , to find what properties of maxima and minima it possesses."

The method of variations was applied by its inventor to differential equations, and

also to those of finite differences. Cases may occur, in which it would be necessary

to apply it to equations of mixed differences ; these relate to a number of difficult

problems, such , for instance, as this : “ What must be the nature of a curve , such,

that drawing to any point, an ordinate and also a normal, and at the foot of this

normal another ordinate ; the curvilinear area intercepted between the first and last

ordinate, may be a maximum or a minimum .”

There are but few instances in the history of Science, in which the path of the

inventor has been the shortest and most direct. Thus it occurs , that the method of

finite differences, which would most naturally have preceded that of the differential

calculus, was not discovered until many years after. Its inventor, Brook Taylor,

published it in a work, entitled, “ Methodus Incrementorum directa et inversa , ”

a book noted for its obscurity. Montmort, Stirling, and Emerson, made several

improvements, which may be found in the Philosophical Transactions, and also in

their respective works. Moivre first investigated the nature of recurring series, on

which, Laplace remarks, “ Sa theorie est une des choses les plus curieuses, et les

plus utiles que l'on ait trouvees sur les suites. ” It has been well observed, by the same

author, that the first who summed a Geometrical or Arithmetical series, had really

integrated an equation of finite differences. The same remark, as is well known ,

applies to any recurrent series . It was not, however, till Lagrange in the Melanges

de Turin, vol . I. applied Alembert's method of indeterminate coefficients, to an

equation of differences of the first degree, that this truth was perceived. In the

fourth volume of the same work, Laplace published a Memoir, in which the two

celebrated theorems of Lagrange, respecting equations of common differentials, are

extended to those of differences, and to those of partial differentials of a similar de

scription , with constant coefficients. Returning to the subject, in a Memoir com

municated to the Academy of Paris, he integrates a very extensive class of equations

of partial differences, involving any number of variable indices , -- and also a singular

species of equations, frequent in the theory of chances, called by him, equations

rentrantes.
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Of equations beyond the first degree, very few have been solved, if we consider

their amazing variety and importance. Monge has given a short paper on the

subject, in the Memoirs of the Academy of Sciences, for 1783. Laplace also in the

15th number of the Journal de l'Ecole Polytechnique, has by a most happy combi

nation of the equations of differences, with the discovery of Euler, respecting

elliptic transcendants, integrated a few very difficult ones. The nature of the

integrals obtained by Charles, requires a fuller investigation. They might perhaps

receive considerable extension . When the variables are mixed in the indices, thus,

Uz + y , Ux - y + 1 , Uzy , &c.; the subject seems to have passed altogether unnoticed.

Many equations containing such expressions, are impossible or contradictory.

Euler' first remarked, that the constant introduced by integrating an equation

between Uz , Ux + 1 , &c. may be an arbitrary function of cos 2 + x , a remark which

afterwards in the hands of Laplace, (Savans Etrangers, 1773, ) became the foundation

of a very general theory of determining functions from given conditions. To notice

all the applications of the theory of finite differences, or all the profound researches

which have enriched it, would occupy volumes . We cannot, however, pass over the

theorems relating to the analogy of differences to powers, given first by Lagrange

without demonstration, in Mem. de Berlin . 1772. A demonstration by Laplace,

appeared in the Mem. des Savans Etrangers for the following year, and another in

the Mem . de l'Acad . for 1777. In 1779, appeared that noted Memoir, in which

the same author exhibited the principles of his powerful and elegant “ Calcul des

fonctions generatrices.” In this *, he gives a far more systematic proof of the

theorems, and extends them to any number of variables. Since that period, they

have been demonstrated by Arbogast, in the 6th article of his, “ Calcul des derivations,"

where, by a peculiarly elegant mode of separating the symbols of operation from

those of quantity, and operating upon them as upon analytical symbols ; he derives

not only these, but many other much more general theorems with unparalleled

conciseness. Brinkley has given a demonstration of the theorem

r
Anu, = хи ,

Δα

d x

d ..

E

-1} **
of considerable elegance, and a simplicity truly elementary t.

* This Memoir forms the greater part of the first Chapter of the “ Theorie Analytique des Proba

bilites . ” Its first principles, and the demonstration of the theorems, on the analogy of differences with

powers, are given briefly in the 15th Nº. of the “ Journal de l'Ecole Polytechnique. ” A slight sketch

of the method alluded to, is also to be found in the 9th book of the Mécan. Cél . tom . IV . p . 204.

+ Philos. Transactions, 1807. Part I. He has extended his researches to the actual expansion of the

series themselves, to which these theorems lead ; such, for instance, as

Eu =d.su.dr - * + ^ x .'A , + ( )*.*A, + & c.

But in point of clearness and elegance, by no means with equal success : partly owing to an unfortunate

notation, and partly to the perpetual employment of the theory of combinations. In his results, he has

for the most part been anticipated by Laplace, and others.
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We are now naturally led to say a few words on the “ Calcul des fonctions gene

ratrices. ” Its object may be best stated , in the words of its inventor * : 66 C'est de

ramener au simple developpement des fonctions, toutes les operations relatives aux

differences et specialement l'integration des equations aux differences ordinaires et

partielles,” and from the extreme facility with which all the known theorems flow

from it, and its fecundity in affording new ones, it is, perhaps, in the present state of

science, the best adapted of any, for explaining the general theory of differences, and

the developement and transformation of series. At the same time, it must be con

fessed, that owing to its extreme generality, and the consequent complexity of many

of its operations, particularly in what regards the transformation of series, it is an

instrument to be placed only in the hands of an experienced Analyst. If we except

the calculus of variations, it is the only method, perhaps, of any considerable impor

tance , which has received its first and last touches from the same hand ; and which

first appeared in a state of perfection, very little short of what it at present possesses.

The latest work which treats of this subject, is the “ Theorie Analytique des Proba

bilite's ;" the first part of which is dedicated to a very full exposition of the method .

After the solution of differential equations, and those of finite differences, it was

natural to consider those, in which the difference and differential of a quantity both

occurred . These have been called equations of mixed differences. They were not

attempted until about the year 1779 , when Condorcet and Laplace obtained the

integrals of some few particular cases. But problems which required their application

had been proposed and resolved by several Geometers in the “ Acta eruditoruin," and

in the “ Acta Acad . Petrop .” long before this time ; their solutions were obtained

by certain insulated artifices, dependent on the peculiar nature of the problems.

On this subject, a wide field is extended for investigation, and one which

abounds with difficulties. The little that has yet been discovered , is chiefly con

tained in two papers, one by Biot, in the Memoires de l'Institut, and the other by

Poisson, in the Journal de l'Ecole Polytechnique; the former treats chiefly of that

kind of equations, called equations successives ; the latter integrates a few particular

equations, by employing a substitution used by Laplace, in integrating some

equations of partial differentials.

There is no branch of mathematical science which has not received improvements,

from the profound and original genius of Euler. Several are indebted to him for

their existence ; of this latter class is the knowledge of the nature, and use of definite

integrals, a subject, to which the greatest Geometers of the present age look as the

most probable source of future discoveries and improvements.

* Journal de l'Ecole Polyt . Mém. sur divers points d'Analyse.
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Legendre, in a work lately published, entitled “ Exercises de Calcul Integral,”

has collected all that has been discovered on this subject, and demonstrated the

results with peculiar elegance ; the greater part is extracted from the various works

of Euler, and also a considerable portion from some Memoirs of Laplace . Its

application to the solution of differential equations, from which so much is expected ,

does not enter into the plan of his work ; this however has been well treated , by

Lacroix, in the third volume of his Traite de Calcul, &c.

But the most elegant part of the theory of definite integrals is, their application

to such problems in finite differences, as involve functions of very high numbers.

In many cases (particularly in the theory of chances, ) it has been well remarked,

that the mere impracticability of the arithmetical operations requisite to obtain

a result, (however simple its analytical expression ,) must for ever preclude our ad

vancement ; were it not for some mode of approximation, which, grasping the

prominent terms of an expression, in a formula easily reduced to numbers, should

throw the minor ones into the back - ground , to be valued by a series converging the

more rapidly the higher the numbers employed become. A more appropriate

instance cannot be adduced, than the equation

$ +

= S1.2.3 ... .6.1(2m ){1 + ies
1+

+ & c.2883

in page 129 of the “ Theorie Anal . des Probabilites, ” or the method in which the

author, in page 259 of the same work , computing the probability of a primitive

cause influencing the inclinations of the cometary orbits, employs a definite integral

to effect with conciseness, a calculation surpassing, without that assistance, the utmost

limits of human patience and industry.

In this part of his career, Laplace stands unrivalled . Stirling indeed, and

Moivre had seen , and in some cases obviated the difficulties, arising from the im

mensity of the numbers under consideration . The discoveries of Euler, gave a con

nection and unity to their results . But it was not till the labours of Lagrange,

Condorcet, and Laplace had brought the theory of finite differences to considerable

perfection, that the definite integrals were applied by the latter, to the solution of

these equations, and a clear and strong light thrown over this most obscure part of

the Mathematics. The whole of this interesting theory, has been digested into one

work, (“ Theor. de Prob .”, above cited) which for comprehensive views, for depth of

investigation, and the purity of its analysis, may justly be looked up to, as marking

the highest point to which the science of abstract number has yet attained .

In analytical investigations, we frequently meet with a series of quantities

connected together by multiplication, whose differences are constant. These have
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received various names from different Geometers ; Vandermonde called them powers

of the second order ; Kramp adopted the appellation of Facultes numeriques ; and

Arbogast named them Factorials. Each of these writers treats them in a different

manner, and employs a peculiar notation for them : that of Vandermonde is perhaps

the best adapted to the subject, as it has a considerable resemblance to that of expo

nents, and possesses also an advantage, which is by no means inconsiderable, that

of being capable of a ready extension to powers of all orders. Lacroix has adopted

it, and by its help demonstrated many properties of powers of the second order.

Those of the superior orders have not as yet been examined . Kramp has deduced

from his “ Theorie des facultes numeriques,” some contradictions which require ex

amination . One of his most useful theorems affords a method of transforming any

power of the second order, into a series which converges ad libitum . It appears

probable, that the theory of powers of different orders may afford a useful method

of classing transcendents, as they can frequently be reduced to definite integrals, and

by this means their value be obtained, when their index is fractional.

Interpolations were at first considered, as a branch of the method of finite

differences, and as such they were usually treated of together. Wallis appears first

to have applied this name, to the determination of the intermediate term of a series,

whose law of formation is known. The extraction of roots is an interpolation of

powers, and may be considered as an extension of the meaning of exponents, from

whole numbers to fractions. Perhaps it might not be unworthy of consideration,

whether the meaning of the indices of differentiation, could not be considerably ex

tended . Euler seems to have had the first idea * of interpolating the series

dy , d’y , diy , &c.

Laplace has extended his researches on this subject to considerable length, and has

given the value of such expressions as the following, by converging series and definite

integrals

ddr.m
A”.XM

>

d x "

so as to allow of evaluation for fractional values of n . But the indices

themselves might be supposed to vary continuously, and such expressions as these

C )
dP

d x P )

(བ ༠ :)
dA" Y :

dndp ”

become the subject of Analytical investigation . Or the index of a function might

vary, as in the following instance :

* Leibnitz, it is true, in a letter to J. Bernouilli, mentions fractional indices of differentiation . Euler,

however, first determined the value of such an expression as db y , y being a certain function of x .
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Let f ( t) = VG ) Jº ( a) = V(FS) , and so on,

then shall we have,

df" (sec v ) v . log 2
tan

6.-) .
sec

6.-)
O

dn 2

and again, (making use of Arbogast's notation ,) if y = a*

Pn Pn-1 Pi P1 P. Puz

D

P2

.D

Pi

D

PR- 2

0

D, .y = a *. (log a) . (logºa ) (log " al)
PX - 1

where logºa = log log a , log :a = log log log a , and so on .

It has been observed by Charles, that the equation

dy,

Ду. 6

dir

may be transformed into an integral, in which the index of integration is variable.
Its solution then is

y-- = b-re 3.S. .d am

or, which comes to the same,

bn E

% . = b̂ -*.D: {90.&•}

y, being any function of x. Laplace, in the “ Theorie Anal. des Prob. ” gives other

instances of the same kind * .

That such expressions are not merely analytical curiosities, but relate to the

most difficult and important theories, is confirmed by the opinions of the most

* The integral of the equation of mixed partial differences

B

+ B.

ida uz

U , = A.

com ) :-)
+0 .

C * --) + &c.da a db ß dci

may be easily shown to be

Bx

Valb )
U = A

Vila )

at뚜
da

+ BE

Yu, Yo , &c . being the characteristics of arbitrary functions : an expression which except a, B, , ....

are respectively multiples of 1 , 2, 3, .... must necessarily involve fractional indices of differentiation for

some values of x.
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eminent Analysts ; and though on mathematical subjects when proof can be produced,

no weight must be allowed to authority ; yet when the former is deficient, our judge

ment may surely be influenced by the latter.

The importance of adopting a clear and comprehensive notation did not, in the

early period of analytical science, meet with sufficient attention ; nor were the ad

vantages resulting from it, duly appreciated. In proportion as science advanced, and

calculations became more complex, the evil corrected itself, and each improvement

in one, produced a corresponding change in the other. Perhaps no single instance

of the improvement or extension of notation , better illustrates this opinion, than the

happy idea of defining the result of every operation , that can be performed on quan

tity, by the general term of function, and expressing this generalization by a cha

racteristic letter. It had the effect of introducing into investigations, two qualities

once deemed incompatible, generality and simplicity. It now points out a calculus *

perhaps more general than any hitherto discovered, and which should be called

the calculus of functions, a name that more naturally belongs to it, than to that

which Lagrange has so classically treated in the work which bears this name, although

this latter is a branch of it.

Its object would be in general, the determination of functions from given con

ditions of whatever nature , whether depending on the successive terms of their

developements, or on a series of indices differing by unity ; or lastly , on a species of

equations depending on the successive orders of the same function, of which the first

mention we believe is made in one of the
papers

which compose the present volume.

The necessity of this calculus was perceived soon after the discovery of equations of

partial differentials, when it became requisite to determine the arbitrary functions

which enter into their integrals, so as to satisfy given conditions. Euler and Alem

bert determined a few particular cases . Lagrange, in a Memoir entitled, “ Solution

de differens Problemes de calcul integral,” resolved the equation

T = a . ¢ { t + a . (h + kt) } +3.0 {t + b (h + kt)}+ &c.

Monge also has given several papers upon the subject, in the Memoirs of the

Societies of Turin and Paris . The method of Laplace for reducing an equation of

the first order, where the difference of the independent variable is any function of

the variable itself, to one wherein that difference is constant, is well known . It had

not, however, hitherto been shewn to be possible to reduce every equation of the

former kind, to one of the latter. This object is , however, accomplished in the

following pages . Still, it appears by no means natural, to resolve these equations, by

* Quaniobrem non solum in hoc negotio, sed in plurimis aliis casibus, maximé utile foret, si func

tionum doctrina magis perficeretur et excoleretur. Euler, Act. Acad . Petropol. tom . VII .
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means of finite differences, and it were much to be wished , that some independent

method could be discovered, by which they might be treated .

One of the most striking advantages of the theory of functions, is, that it seems

equally adapted to the proof of the most elementary truths, and to that of the most

complicated and abstruse theorems. The latter part of this assertion , no one will be

inclined to deny. An example of the former may be found in Laplace's proof of the

decomposition of forces in the “ Mecanique Celeste” *.

There are still many problems in the theory of functions, which analysis seems

* This demonstration consists of two parts. In the first he proves, that the diagonal of a rectangle

whose sides represent the separate forces, will on the same scale represent the quantity of the resultant.

The second is devoted to shew, that it represents also its direction. This part seems to be generally con

sidered, as deficient in clearness and simplicity . What we have here to remark , is, that it is redundant.

In fact, by the combination of Laplace's three equations,

x = 2.0 (0) ; y = x.0 (3-0), + y* = 3?

we obtain

{$co }'+ {* (5 –0)}} = 1

an equation which suffices for determining the nature of the function , and from which , by known pro

cesses , combined with the conditions of the question ; it is easy to obtain (O ) = cos 0 , and x = % . cos ,

which is the equation to be deduced.

Another very remarkable instance of the use of the theory of functions, in demonstrating elementary

truths, may be found in the following demonstration of Euclid's 476h, which has generally been thought
to admit of none, but a geometrical proof: Call a, b, c , the sides, A, B, C, the opposite angles of a right

angled triangle,C = It is easy to see, that the following equations hold good :

b = c . $ ( A ) ; a = c . ° (B) ; ..............(1)

drop a perpendicular p, dividing c into two parts x , y, and we shall have, in the same manner ,

x = 6.0 (A) ; y = a . ( B )

and of course , x +y = e = b . ¢ ( A ) + a . ( B )

from which, eliminating • (A), and ¢ (B), by equations ( 1 )

c * = a +6 , QED.

Having proved from other principles, that A + B + C = , we shall have the very same equation

:

1 = {•«̂ }} + {° C -1)}

and thus we obtain b = c.cos A , a = c.cos B. It is only by this way of proceeding, or some analogous

one, that we can ever hope to see the elementary principles of Trigonometry , brought under the do

minion of Analysis. But this is not the place to proceed farther with the subject. It may suffice to have

thrown out a hint, which may be followed up at some future opportunity.

e
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to afford no means of attacking directly. Among which, may be enumerated the

greater part of those which lead to an equation , containing a definite integral, where

the unknown function enters under the integral sign. For instance, suppose it were

required to find the form of a function $ (x) , such that the integral

Sdx.F {a ,x ,p ( f (x))}

taken between the limits x = 0 , x = a, should equal any assigned function of a.

F and f being given characteristics.

The examination of the properties and relations of numbers, constitutes a distinct

branch of mathematical enquiry, almost entirely of modern origin ; so abstract, and

apparently so far removed from the confines of utility, that it seems to have attracted

little attention from the generality of those, who have dedicated themselves to the

pursuits of science. To the few , however, who have thought it worth their while to

explore its inore profound recesses, it has proved a mine, fertile in the most brilliant

produce. Euclid, in his 7th book, has given the elements of transcendental Arith

metic, (a name appropriated to it by Professor Gauss) . In the work of Diophantus,

notwithstanding the ingenuity of the author, we discover the infancy of science in the

absence of that generalization so happily adopted by modern writers. It consists of

a variety of insulated problems, relating to the solution of certain indeterminate

equations, rather than to the properties of numbers. Indeed, the indeterminate

analysis, and the theory of numbers, form two branches of enquiry, which, (however

nearly connected ), ought to be carefully distinguished , in any systematic arrangement

of our knowledge. The former must be considered as a province of the pure Ana

lytics. Its attainment is indeed necessary for the perfection of the latter, (which

should rather be regarded in the light of an application of analysis,) but is by no

means limited to this one object. Lacroix * has introduced it with a very elegant

effect, in that part of the theory of curves, which relates to their construction by

points.

f

The resolution of the indeterminate equation of the first degree, is said to be due

to Bachet. Euler, in the Petersburg Commentaries, exhibited a method of obtaining

any number of solutions of thatof the second, provided one particular one be known ;

but it has been remarked, that his methods do not afford all the possible solutions .

This, however, has been effected at length by Lagrange, in the Mem. Acad . de

Berlin (1767 and 1768. ) His method consists in reducing successively by a series

of operations, the coefficients of the equation

a x ? + by

( to which form , every equation of the second degree may be reduced,) till one of

* Traité de Calc . &c . 2d edit, vol . I. Note to page 417 .
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them becomes unity ; in which case, the resolution is easy . Gauss also, in his

“ Disquisitiones Arithmeticæ ,” N° 216. has, by a method entirely different, shewn

how to obtain all the solutions, of which an equation of the second degree adnits.

It is extremely remarkable, that the Hindu Algebraist, Bhaskara Acharya, who

flourished about the year 1188, had also succeeded so far in his attempts on this

difficult problem , as to derive any number of solutions from one, previously known

in the case of a xe + b = y'.

The theorems given by Fermat without demonstration , form , without doubt, the

most remarkable era in the theory of pumbers : Too general, and too extraordinary

in their nature to escape notice, they seem to have been the principal cause of the

advances, which have since been made in this theory, by drawing the attention of

Mathematicians to their demonstration . Euler, than whom 'none ever entered with

greater ardency into this career, has proved some of the principal. Lagrange has

supplied the demonstrations to others : still , however, many remain , of which no

proof has been offered . It has been suggested, that Fermat was indebted to the

method of induction, for the discovery of many of his theorems ; an opinion rendered

probable by the observation of Euler, that one of them relating to prime numbers is

not true. This method is perhaps more applicable to researches in the theory of

numbers, than to any other branch of abstract investigation ; but it is of dangerous

use, and should be supported by a large number of instances *.

* The substitution of 0, 1 , 2, ... for x, in the expression x² + x + 41 , gives a series of numbers, of

which the 40 first terms are primes, as Euler has remarked : yet it is easy to shew, that no algebraic

function of x can in all cases represent a prime . The reason of this singular circumstance, and of a variety

of similar coincidences, has since been satisfactorily explained, and the property demonstrated a priori.

Fermat, deceived by a similar induction, asserted that all the numbers contained in the formula 2 :* + 1 ,

are primes which Euler has since (as above alluded to) shewn to fail, in the case of n = 5.

The following theorems are derived solely by induction :

1“ An indefinite number of integer values of « may be found, which render?? an integer, to

78.10 1

-1,

32

which we may add, that the formula is always an integer, as are also the formulæ
10-4 % 2*

(2n- 1 )

and, in general, which last may be easily shewn, a priori, as well as a variety of ex
2 *

pressions of the same description.

310 *_1
2do. The expression is an integer, and , it is somewhat remarkable, that this integer is

10x + 1

always of the form 100n + 22.

3°. If A be such , that 5" is congruous to A, (modul . 10 % ) then will also 5 +2"2* -?
.. be congruous to

the same A, to the same modulus, and consequently, 54 + 2 55". (modul. 104) i being any integer.

In other words, the formula

5x +2.5-5

105 + 2

is always an integer, X and i being integers.

k-2
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Among the later discoveries in the theory of numbers, we have to enumerate two

of the most surprising, which perhaps are to be found in the whole circle of Ana

lytics. The first is a formula of Lagrange, obtained by induction , for determining

the number of primes contained between given limits . It has been demonstrated by

Legendre, in his “ Essai sur la Theorie des Nombres,” although not very rigorously,

it must be confessed ; such is the difficulty of the subject. Indeed , the author has

given it only as an attempt. The other is that celebrated theorem of Gauss, given

in his “ Disquisitiones Arithmeticæ ,” on the resolution of the equation 2 " – 1 = 0,

n being any prime, viz . that this equation may be reduced to a equations of the

degree a , ß of the degree b , and so on, where n - 1 = a" .68 .... Of course , the

esolution of the equation x " – 1 = 0, where n is a prime of the form 2m +1 , requires

only the application of quadratics. Thus the division of the circle into 17, 257 ,

65537 parts, may be accomplished by the description only of circles and straight

lines .

To enter into any account of the advances made in the mixed Analytics, would

far exceed our limits. There is one point, however, which we cannot forbear cur

sorily touching upon , on account of the great difficulty of reducing its conditions

into symbolic language. We allude to the geometry of situation. Like the theory

of numbers, at the first glance it seems barren and useless, but on a nearer exami

nation is found abounding with interesting relations. Like that theory too, its

cultivators have hitherto been few , but eminent, distinguished for that restless spirit

of enquiry, which is ever upon the wing in search of new truths, and that invention

which knows how to extract them, from the most unpromising hints. Leibnitz,

appears to have found its first application , in considering the game of solitaire .

A similar case (the problem of the knight's move at chess,) occupied the attention of

Euler, and afterwards of Vandermonde, who adapted to it a notation analogous to

that, by which the position of a point in space is determined, by three rectangular

co -ordinates. In a more advanced state, it might , perhaps, embrace problems of a

much higher order of difficulty, such as the following : “ Given n points in space ;

to find the course to be pursued, so that setting off from any one, and passing at

least once through all the rest, on returning to the original position, the least possible

space shall have been described . ” Such is the brief account of a theory yet in its

first infancy. On its basis some future LEIBNITZ may perhaps hereafter lay the

foundation of a name great as that of its original inventor *.

* In the “ Journal de l'Ecole Polytechnique, An . 10. ” is a Memoir on polygons and polyhedrons,

by Poinsot, in which he shews, that there exist other regular polygons besides the equilateral triangle,

the sum of whose angles is equal to two right angles, and also, that there are more than five regular

polyhedrons. The whole Memoir relates to geometry of situation, and forms the introduction to some

more considerable researches, which the author promises in a future paper.
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The preceding pages have been devoted to a slight account of the history and

present state of Analytical Science, that branch of human knowledge, of which

Laplace has justly observed “ C'est le guide le plus sur qui peut nous conduire dans

la recherche de la verite " . But some account will naturally be expected of the source

itself, from which the present work emanates. Of this however, very little need be

said, but, that it consists of a few individuals, perhaps too sanguine in their hopes of

promoting their favourite science, and of adding at least some trifling aid to that spirit

of enquiry, which seems lately to have been awakened in the minds of our country

men , and which will no longer suffer them to receive discoveries in science at second

hand , or to be thrown behind in that career, whose first impulse they so eminently

partook. The time perhaps is not far distant, when such an attempt will be regarded

in an honourable light, whatever may be its success.

Meanwhile the view we have taken of the subject, appears by no means to lead

to the mortifying conclusion, deduced by a foreign Geometer of considerable emi

nence ; que la puissance de notre analyse est a -peupres epuisee .” The golden age

of mathematical literature is undoubtedly past. Another, “ less fine in carat,” may

however yet succeed . The motive which could draw forth so severe a sentence on

the success of future exertions we will forbear to enquire, but it must surely be

looked for elsewhere, than in the real interest of science which can never be promoted

by repressing the ardour of research, or extinguishing the hope of reward . The

foundations of a vast edifice have been laid ; some of its apartments have been

finished ; others yet remain incomplete : but the strength and solidity of the basis

will justify the expectation of large additions to the superstructure.

Attentively to observe the operations of the mind in the discovery of new truths,

and to retain at the same time those fleeting links, which furnish a momentary con

nection with distant ideas, the knowledge of whose existence we derive from reason

rather than perception , are objects in whose pursuit nothing but the most patient

assiduity can expect success. Powerful indeed, must be that mind, which can

simultaneously carry on two processes, each of which requires the most concentrated

attention . Yet these obstacles must be surmounted, before we can hope for the

discovery of a philosophical theory of invention ; a science which Lord Bacon re

ported to be wholly deficient two centuries ago, and which has made since that time

but slight advances. Probably, the era which shall produce this discovery is yet

far distant. The capital of science, however, from its very nature, must continue to

increase by gradual yet permanent additions ; at the same time that all such ad

ditions to the common stock yield an interest in the power they afford of mul

tiplying our combinations, and examining old difficulties in new points of view. It

is this connection with fresher sources, which can restore fertility to subjects appa

f
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rently the most exhausted, and which cannot be too earnestly recommended to those

who wish to enlarge the limits of analysis. The fire of improvement; however

dormant, and seemingly extinct, may yet break fortli at the contact of some external

flame. The history of Mathematics affords too many instances of the most distant

principles coming into play on the most unexpected occasions, to allow of our ever

despairing of success in such enquiries.

One inconvenience however, results as a necessary consequence from the con

tinued accumulation of indestructible knowledge. The beaten field of analysis,

limited as it is when compared with the almost boundless extent which remains to

be explored , is yet so considerable with respect to the powers of human reason , and

(if we may be allowed to pursue the metaphor a little farther,), so intersected with

the tracks of those who have traversed it in every direction, as to become bewildering

and oppressive to the last degree. The labour of one life would be more than

occupied in perusing those works on the subject which the labour of so many has

been spent in composing. The multitude of different methods and artifices, which

for the most part lead only to the same results, and whose power is limited,by the

same points of difficulty, is at length grown into a very serious evil. Our continental

neighbours seem sensible of this, if we may judge from the number of works which

have appeared within these few years, digesting various points into a systematic form .

But there is still much to be done in this line. That man would render a most

invaluable service to science, who would undertake the labour of reducing into a

reasonable compass the whole essential part of analysis, with its applications, cur

tailing its superfluous luxuriance, rejecting its artificial difficulties, and giving con

nection and unity to its scattered members.





ERRATA .

Page 3. line 4. for exponent p- 1 , read -p- 1

ib. last line but one. for 23+1 , read Ug+ 1

15. line 4. for 2 in the exponent, read – 2

24. last line.

for log.{1–1,17}0 ". read { .- *} '



ON

CONTINUED PRODUCTS.

ASSUME the equation,

yox.0x = xX ... (a)

in which the functions denoted by V, 0 , X , are only subject to one condition ,

namely, that the product of the two first is equal to the last . In other respects

they are perfectly arbitrary.

Take any other arbitrary function fx. It is evident that the generality of

equation (a) is neither increased nor diminished by putting ºfx for XX.

Let this be done, then,

yox.0x = pfx ........ (6)

In this equation put for x successively fx, ffx, fffx, and frx ; then

multiply the resulting equations together,

Yfx . o fx ቅpfºx

yf ?x.ºfºx = pf :

yfox.pfx = of x

&c. &c.

yf"x.pf " r = ºfn + ' x

therefore,

Ofn + ' x
yfr.yfax.vf3x ....yf " x ...... (c)

Pfx

In (6) we may without limiting the equation put (4x) for yx, it then

becomes

(x x ) * px = pfx . (d )

A



2 CONTINUED PRODUCTS ..

Dividing by (7x) ', we have

фх Pfx

Yx (4x)" · (e)

Let us assume

I 1 L

.

ofx sof* x Sof3 x S
&c.

Sof" x ]

14fx lyfar yfir Vf" x--

9-- for

I

2

11

P

ፓ

I 공

ቂ f *r ቅ f * r

(48x)" (4 $ * x )"

1Фf" x
&c.

( \ fr- a ) ( *. "

Multiplying by (ºf " +'a) poti, we have

1

I 공

y (pf n+ 'x) puti =
Pfºx Pfºx of" x_ S Pfn+ x

(4fx ) (48*? x ) ( 4.fr-1x ) (Vfax)"

Which becomes, by applying equation (e) ,

1

(@fn+?2)priy= {pfc Sofax spf" x )

vfx ( f ?x lyf" x

Hence, yp (@ fn+im )+ = yºfc

Фfх

{
&c.

} = {954.y}

ур
сі1 =

(ofn +1x ) P"

Фfх
P - 1

1

y =

X)P

1
1

р

I 공

ofx

( ofu ++ x )?

Sofr [pfºx

[Yfx \4f²x

Sºf"

(v frx
is&c. · ( f )

* Braces with an index as

6 ) over them signify the

i
power of all the following part of

the expression.

1



CONTINUED PRODUCTS. 3

Putting p for }, we find

P

{
$($ fu+ c)po Sofx of?x

lyfx ly f²x

& c.

Sofrx

lyf"x )

(8 )
pft

And the equation determining the functions becomes,

{ px " 47* ' = {px}"

These equations in their present general form are sufficiently concise, but as

they will become rather complex by the substitution of particular cases, I shall

make use of the following notation to abbreviate them . P with an index above

it placed before any function of n and other quantities signifies the continued

product of that function, n being successively equal to 1. 2. and n ; thus,

n

P {yf^ x } = \ fr.yf ? r.4f8x ...... yfrx

If the product is to be continued to infinity, I shall make use of Euler's

method of denoting the limits of integrals.

= XQ + 1

In ( 6 ) assume

y = 1 + 2 + cº + &c. + a .. fx

{ 1 + x + x2 + & c . +xa } px = 0.x4 +1

T4+ 1 = 1

or , φα p.x4 +1

Let, Yo = x and Yz+ 1 = 22 +1 then ,

X- 1

a +1

Y: = Y:+1

Z

1 + 1

By integrating :Y=هپ = y. = C = X

Let = Uzфх фу?:

фа+1 = DY: +1 = Uz+ 1

% + 1

then,

ca +1-1

U = % +1

ca + 1-1

%

+1

ca)(+(یسا)هدو +1— 1 ) Uz =



4 CONTINUED
PRODUCTS

.

Q : U : +1

But this equation is of the form

Q: + , U ; =

whose integral is

U = bQ :

therefore,

bicati - 1 ) = (x – 1 ) b ... ... b = 1Uz = ቀድ = b

Substituting these values of y f and p in (c) , we have

nti
n

n

20 +

P { 1 + x4• a + l + pe.a +1 + &c. + x4. qara+1} ..+ } ......(1)
X4 + 1

Let a = 1

nti

re

P {1 + z2"} = (1+ xº) ( 1 + x4)( 1 + x®) .... ( 1 + x2)...... (2)
x2 -

If a = 2

: - P x + zï {1 + 2 +29-3"} = (1 + x2+ x®) (1 + 2° + 2'6)..(1 + x*+ 220")...( 3)

In ( 1 ) for a put any even number as 2a, and make x negative,

nti

11 + x2a+1
?

1 + 2a+1
= P

2a + 1T

P { 1 – no 2a+1"}
.

. 2a + ....& c . + x20+ x².2 (4)

Let a = 1

n + 1

17 = Þ {1-8"470"} = (1-2 +2)(1–2* + 2 1) --(1 - ** + 29.6.... ( )

Assume fx = x, and
1

1 + x2a +1

yx = 1 - x + x2 - &c. + dela =

1 + x

x = Y: x2 = 7: +1

2

Let

Yz
= c2

dyz = U, фу. + , = Uz + 1



CONTINUED PRODUCTS . 5

Equation (b) becomes

12

1 + c2a + 1.2

U : +1

1 + 2+

U = ( 1 + c2u +1.2ej = U : +1 (1 +ca;

In order to reduce this to the form of

Q:+ , Ug = Q.Uz + 1:

multiply each side by ( 1 – ceat7.2 ).(1 cm)

us (1 +0=71.03 .(1– ce*1.07.(1 - 0) = us+:(1-cartoo').(16).(1+6+)

: (1 – ça+1.2)+(1– 62) == U :+1( 1 –cat7.23.(1 - !

z + 1

U.

22 + 1

1 c2a+1.2

= Uzt , X
2 + 1

1 - C2

1 - c2a + 1.2

Uz X
z

1 c2

Hence,

1 - c2a+1.2 1 x2a + 1

u , = px
%

1 NO

1 c2

Putting for f, y, and p , their values in ( b ), we have

nti

c2a +1.2 1 x2

Х

nti

22. 2a + 1 1

P { i – 7.2 + x2.2* _ & c.+ x2402"} ..... (6)
1 - x²

Let a = 1 ,

nt2

1-2

nt1

1-73.2

Х

1-72.3

nti

1 + x2 + r

1 + x2 + x4n+1

1-72

n n 141 n n+ 1

= P {l_x? + x ? " } = ( 1 — 2? + x )̂ ( 1 —44 +29) .. ( 1 – x2 + x2 ) ...... (7 )

Divide (5 ) by (3 )

22

3

1+20

nt1

1 mm

Х
n+1

1-23 1 + 2-3

-X3+ ?. - x3 + x2.3

1 -x += P / 1_23 P(-(:)..(مع)... n

11-1 + x3 + x2. 1 + 2 + .x2.3

B
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CONTINUED PRODUCTS.

In equation ( 1 ) , for x put x , and let a be any even number as 2 a, then ,

n2

n
nn+1

19.2.1+1.2 P {1+ x1.2u +1.27.22. 7a +1.27 & c.+ z2a.20 +1.2 }
---

Z
Zu + 1.2

Divide both sides by

.
n

2a +1 +211 + 1 + &c . + 2a + 1

1

nti

2 + 1 - 211 +

W

zutit

Þ {aza torting}
x²
a

By properly arranging the right side of the equation, it becomes,

n+1 nt!

r

-20 + 1

X211 +1

a2a + 1 X
2a + 1

-

= {P {1+ (20.2 +1+ 2=1.44+1"
) + (z • + +.2-1-1 +1)+ & c. +(adotati 1.22 Paxatij }

x+ 1 + x put
2 cos . A

For

nti

This substitution gives,
sin . 2a+ 1.0

sin . 2a+ 1.0

n

n . (8)

*
} ...P1+ 2 cos . 2.2a +16+ 2 cos. 4.2a +1 0 + & c.+2cos. 2 a.2

{ 1

For a in ( 1 ), put any odd number as 2a - 1 , and substituting x for ,

n+1

-1x(2a) . 2

.c (2a) . 2
= P {1+21.0)+2+.325(20)427 &c.+ 24–1. (2.)”}

Divide each side by
n

fran's
(2a) + (2a)* + &c. (2a )

* +&c. (24)"}
n+1

-2a

2a - 1. (20)
X

(29)

X

P <xlu

then ,

x (2a )

n + 1 n + 1

re ( 2a )

х?а .
2a

X

*p {{co(Ba + x= " ( *

(20) )+ (23.(20) +2 +36(20)") + &c. + (x2 =70(20)+ c= 2ut10(2a



CONTINUED PRODUCTS, 7

Using the substitution

x + 1 + x- ' = 2 cos. O

n41

sin . (2a ) .

sin . 2 a 0 = P {cos. 1 ( 2a) *® + cos.3 (2a) " 0 + & c.+ cos.22–1(2a )"0} x P { 2 }
n

But P { 2 } 2"

n+1

1 sin . ( 2 a ) 0

sin . 2 a 0
= Pcos. 2a " ) .P {cc 1 (22) *& + cos. 3 (2a)0 + &c.+cos.24–1(2a)"e . } .. (9)24

If a = 1 , it becomes the well known expression of Euler

1

2

n+ 1

sin . 2 0

sin . 2 0
= cos. 20.cos. ze.......cocos. 20 ..2 ". ( 1,1 )

Let a = 2

n

1

n+1

sin .40

sin . 4 0
= P { cos. 1.4 0+ cos. 3. 4 0 }. .... ( 1 , 2)

2"

If the same operations be performed on (4) and (6) that have been made

use of on ( 1 ) , the results will be

n n 22

nt1

cos. 2a + 10

cos. 2a +10

P$ { +(1–2002 cos. 2. 20 + 1 0 + &c. + 2 cos. 2a.2a +10)

and

nti

sin . 2. 2a+ 1.0

sin . 2 2a + 10

sin . 2 A

sin . 2" @

n n N

P { + ( 1-2 cos . 2.2 0 +2 cos . 4.2 0 - &c. + 2 cos. 2a.20) }2a

plus or minus being used as a is an even or odd number.

To obviate the ambiguity of the signs, it will be better to put for a , 2a,

and 2a - 1 , then,

nt1

cos . 4a + 1.0

cos. 4 a +10

n

= P {1-2.COS1 – 2 cos. 2.10+1.6+ 2 cos.4. Au + 18-& c. + 2 cos.4a.4u + 10}...( 1,3)4u *
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nti

cos, 4a - 10

cos , 4a - 10

= P{2
-1o-1}..( 1,4 )2 cos. 4a – 2.40 – 10-2cos. 4a - 4.42-10 + & c. + 2cos. 24a - 10

n + 1

sin .24a +10

sin . 2 40 + 10

sin. 20

sin. 2 " + ' 0

n n

= ï {1
- 2 cos . 2.2 0 + 2 cos. 4.2 0 - & c . + 2 cos . 4a . 20- 2 .4 a19.2 }........ ( 1,5 )

sin, 20

nti

sin. 2 40-10

sin. 2.40-18
1 + 1

sin . 2 o

n 22

= P 2 cos.40-2.2 0-2 cos.40-4.2 0+&c. + 2 cos .2.2 0*Þ {2cos. 05.2.2"0–1}....( 1,6)

In (8) make a = 1 , and also make a = 1 in ( 1,4 ) Dividing the last result

by the first.

nt1

cos. 3 0 sin . 3 0 tan . 30

tan . 3 " +10

= P <2cos. 2.3 6-1 ) P 2- sec.2.3 7
2 + sec.2.3 "ON

( 1,7)
.

cos . 3 0 sin . 3 " +10 12 cos.2.3 "0 + 1)

Or,

tan . A

tan . 3 " +10

2 - sec. 2.3

2 + sec. 2.3 es

12 - sec. 2.301

12+ sec. 2.320)

2- sec .2.3 "01

12 + sec. 2.3" )

In ( 1,6) make a = 1 , and in ( 1 , 1 ) , put 20 for 0 ; then ,

sin . 3.2" +10

sin . 2" +10

sin . 20

sin . 3.20

P
2 cos. 2.2"0—1}........ ( 1,8)

1

And,

sin . 2.2" + '0

sin . 2.20
{ cos . 2. 2"0 }

2"

The first divided by the second produces

2 " sin.3.2" +1

sin . 3.20

sin . 20 sin . 2.20

sin , 2" +10 sin .2.2" + '

P { 2 - sec.2.2"0}.... (1,9).



CONTINUED PRODUCTS. 9

If in theorems (8) (9) (1 , 3 ) ( 1 , 4) ( 1,5 ) ( 1,6) for 6 be substituted

in each respectively,

o

(2a + 1) "+ 1" (2a) ( 4a + 1) * +1 (4a– 1)"+ T ! 2u + 7' 21 +1

A o

The following are the results :

sin . 4020

= P

* {1+
1 + 2 cos. + 2 cos.

( 2a + 1 ) "

2 a

( 2a + 1)" )
( 2a + 1)* + & c. + 2 cos.

49);}
.. (2,1)

sin .

(2a + 1 )"

1 sin. 0 1.0

COS .

3.0 2a - 10

+ & c . + cos.

( 2a)" (2 a)"
(2, 2)

2 "
(2aju + cos.

sin .

( 2a) "

B {

= {

.......

(2440)}
cos. O

ř (1-2cos.
28 40

:+2 cos . - &c.+2 cos.

(4a +-1) " ( 40+ 1 )"
(2,3 )

e

COS.

(40 + 1 )

cos. O 4a - 40

= { {

40-20

2 cos.

(40-1)"

2 cos.

20

(4a - 1 )"
(42 – 1) + & c. + 2 cos .

< -1} ..} ....(2,4)ө

COS.

(4 a – 1 ) "

sin .

o

2 "sin . 40+ 10 4 aө

P {i

20 40

2 cos . + 2 cos.

2"
&c .+ 2cos .

}.... (2,5 )2 " 2n

40+ 1
sin .

2"

sin .

A

sin. 42-10
sin.

2 " 40-20

= P2cos.

2"Þ {20
4a-40 20

2 cos.
+ & c. + 2 cos ,

2" 2" -1 }} .... (2,6)
sin .

40-1

-

2

sin ..

Other theorems nearly similar may be thus derived . In (1 ) , for x put vr,

and ; multiply together the results ; and in the left side of the equation put

for v + i + u- its value 2 cos . O ; then,

n+1 n+1

cos . a +1 0 + 1

2? (a + 1 ) 2.0 " + cos . a + 1 + 1

n + 1

22 (a + 1) 2.2 (a + 1)

n

= P

P {1+(30) +(xv) *+*+&c.+(zu) nori"}

x« P{1+ 0 +*+0 **(*)*** *'+&c+0)+0 )

n n

2.a + 1

с



10 CONTINUED PRODUCTS ,

In order to reduce the right side of the equation to a series of multiple

arcs, let us consider the product of two functions of this form ;

f (xv) = 1+ (xv) + (xv ) ? + & c . + (xv )"

= 1+ (%) + (%) + &c.+ (%)*

Their product is of the form

f(xv) x f

(1 + x? + & c.ala) + x (1 + x ?+ & c.221–2) (0 + 1+0-1 ) + xº ( 1 + x2 + &c . + # Pa- ) (v + * + 2 ^ 2) + & c. + xa (v + 4 + 0-4)

{1–2): { { ( 1 – 2 * + ) +2 (1 –ze) (v + ' +o- 1 ) + x°(1– 224-2) (v + + v 9) + & c . & " ( p + + v - a) }=

Putting v + 1 + v- 1 = 2 cos.7, and applying this to the preceding expression ,

n + 1

22.a + 1

n + 1 n+1

2 x4 + 1 cos. at 1 0 + 1

2x + cos. a + 10 + 122.2 + 1

= ( 1 – 22) - > P {( 1 – diže 72.0+1) +261 – 22.0 +9 )..aticos. 1.a7i0 +& c.+ 2zmati cos.a.a + 1*e}

In the case of x equal to unity, this expression becomes

n+1

1 cos. ati 0

1 - cos. a+ 10

P { (a + 1 ) + 2(a)cos. 1.a+1 +2(a—1)cos.2a + i*o+ & c.+ 2(1)cos.a.a + î e}.. (2,6)

If u do not equal unity, and if a = 1 ,

rit1

2.2

nt1

2 x2 cos . 2* + 10+ 1

2 x'cos. 2 + 1

P

P {1+22"cos
ma cos . 2 " 0 + 32***}...... (2,7 )22.2

If the same operations are performed on (4) and (6), we shall obtain the

following results ;

n+1

1 + cos. 2 a + 1 . ө

1 + cos. 2a + 1.0

ï {(2a+ 1 ) – 2(2a) 1" +cos. 1.20 + 1 0+ 2 (2a - 1 ) cos. 2 2a +1 0 - &c. +2( 1 ) cos. 2a. 2a +1a +iºoo

n

1*0}..(2,8 )
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2

1 - cos. 2 a + 1.2" +1 0

1 - cos . 2a+ 1.20

1 - cos. 20

1 - cos. 2n + 10

sin . O

sin. 2 "

psin . 2a + 1.2"

sin . 2a+ 1.0

=

c
o

. .

= { {( 2a + 1)—2(2a )cos. 1.2 * 0 + 2(22 – 1)cos.2.2*9 –& c.+ 2( 1 ) cos.24.2-e} .. (2,9)

We will now give some examples of the use of theorem ( f ), the chief

difficulty consists in finding functions which satisfy the equation (d), for, if

the two functions y and f be assumed, the third must be determined by the

method of La Place, and this generally leads to equations of finite differences

whose solutions are above the powers of Analysis in its present state.

In one case however (namely when p = 2), the solutions we have obtained

for equation ( b) , are also solutions of (d), for in this case (6) and (d) are

identical.

We have already determined , that if

px = 1 + x + x2+ & c.x ", and f x = 24 + 1

that
0x = x- 1 ;

hence, substituting these values in ( f ),

204 + 1-1 Xa+ 1

n + 1 in
= Pës

- 1

1 + xla + 1 +x2.4 + 1 + & c. twaa+ l
ati

n n n (3 , 1 )
xat

i

- 1

If a = 1 ,

n 1 1

1

1/

x2x² 1 1CN

n

P firme 1 ) in

1 +1

n + 1 & c. 2

(3,2)

-1} x2 x2 +1 1.24 + 1 28+ 22

+1

put xv, and xv- for x, multiply the results

n+1 ,

x ? v - 2-1
n

.x²v? - 1

n + 1

- РХ

r2 - X2

n + 1

*( * +-+ * ) + 11.
*

+ x?"(02" + 0-2")+1 )

n n n

{(xe " } (xv=1)** 1} .
x²

for vtv- l put 2 cos. O

ntl n

24 - 2.x cos . 2 + 1

n + 2 neti

-2x2 cos . 2* + 10+ 1

P [22 - 2x* cos.2"0+ 111

1 202 +2x ? cos.2"0+ 1

(3, 3 )

+ 10+147
2
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If x = 1 , and for @ be substituted 20, and the necessary reductions be made,

2 sin. 20
n

= P 1.2"0} := (tan.20) (tan.40)*...tan. 2"0)*... (3,4 )
( 2șin . 24 +10) {

For e substitute

2
0
+1

1

2n +

o

2 sin .
2"

tan .

(2 sin. 8) 1.

Raise both sides to the power 29+', then,

(2sin. *)***

2 sin. e )? = P {tan. 3*" = ( tan. ) . ( tan. 9) (tan - ..( 3,5)

Assume

fx = x2+1

фfr

φα = 1 -X

1 - x2 + 1

1 + x + x ? + & c . + xre(42)*-* = ºfx
-

фх

P- 1
yox -Jitx + x? + & c. + x ^

and by substituting the values in ( f ) ,

V -1 =
nt 12

Vi1 + xlenti" + x2.a +1 +&c . + front]

72

n

1 - za +1
1-29 +1

P
pr ...

Vitamin
(3,6)

n

l- xati

n+1

1
2a + 1

20 + 1

pa )

For a put 2a, and for x put x ?: Divide both sides by x and

substituting for æ+ 1 + 2-1 its value 2 cos. 0, and for 2 + 1 – 2-1 its value

+ 2.V - 1 sin . 0, some power of N- 1 will enter both sides of the equation ,

and they must be divided by it, but the v- 1 is on both sides of the equation

multiplied by 2 ; and therefore the equation is also divisible by the same power

of 2 ; having performed these operations, the result will be

sin. 2a + 10 lei
241 1

sin . 2a+ 1 OPT

92 sin . 2ätie

.. (3,7)= P n
n

p

i + 2 cos. 2.2a +12 + 2cos.4.2a + 10 + & c. + 2 cos . 2a.2a + iel
+ °
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If we had began by putting 2a for a, and —x for x , the result would

have been

cos. 2a + 10

nt1

ll

{ { cos. 2a + 1 pa

n

cos. 2a + 10

.P

20 + 1

1-2 cos.2.2a + 1 + 2C09.4 . 2a+10- &c. + 2 cos. 2. a.2a + 10

(3,8 )
n n n

Dividing the first of these expressions by the second,

+

{

tan . 2a +10

Intl

tan . 2a +1

VE

9S

n 78

sin . 2a + 10 1 - 2 cos. 2.2a + 10 + 2 cos.4.2a + 10- & c .+ 2 cos. 2a.2a + 10n

ass = ...
= P n n n (3,9)

cos. 2a +10 11 + 2 cos. 2.2a +10+ 2 cos. 4.2a + 10- & c . + 2 cos . 2a.2a + 1

If a = 1 , p = 2,

n

Stan . 3 " 0 . sec. 2.3 0 -2 n

tan . 30

n + 1

tan . 3

. ( 4,1 )n

{ta sec. 2.3 A + 2

In (3,6 ) for x , substitute successively xv and xv- ' ; multiplying the results,

and making

x = 1 , and v + l + v- l = 2 cos. 20,

we have

n + 1

sin .atio

le

{sin . ati oa pm

(sin.a + 1%o)
T ..(4,2)

(a + 1 ) +2(a ) cos. 2.2 + 1 0 + 2 (a— 1 ) cos.4.a +1 6 + & c. +2(1) cos. 2a.a +10

= P

F - V at
n

n

If before the preceding substitution x had been made negative, and 2a put

for a, we should have found

D
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cos . 2a+ 10

nti

{cos . 2a+ 1 OP

n

.. (4,3 )
= P

; { Viga+1) 2(2a cos izatietapa-13.6.Patie- stent200s,sabatie)( 2a + 1) -2(2a)cos.2.2a + 10 + 2( 20 – 1)cos.4.2a + 10- & c. + 2( 1) cos.4a.2a +10

3

In (4 , 2 ) make p = and for a put 20,

2

{

sin . 2a + 10

ntl (3 )"

{sin. 2a + 1 e

n

ا
( 3)" .. ( 4,5)

sin . 2a + 10zatie

(2a + 1 ) +2(2a )cos. 2.2a +16+ 2( 20 – 1)cos.4.20 + 10 + & c. +2(1) cos.4a.2a + 10

P
n

22n

3

In ( 4,3) make p =
2 '

{

cos . 2a + 10

n+ 1

cos. 2 + 1
ө

n

cos. 2a +1
n

P
13)" .(4,6)

a + i"( 2a + 1) – 2 ( 2a)cos . 2.2a +1 0 + 2 (20— 1) cos. 4.20 +10-&c. +2 ( 1 )cos . 4a.2a +1 0

n
n

Dividing the first by the last,

n

tan . 2a +18

+

tan . 2a+ 1 o} ( )

n
n

n

72

n

P
ſsin.2a +18 (2a + 1) — 2(22)cos. 2.20 + 1 2 + 2(20— 1)cos.4.2u + 10– & c. + 2(1)cos.4a.2u +10– 2 )".(4,7)

cos. 2a +10 (20 + 1 ) + 2( 2a )cos, 2.2a +10+2(20— 1)cos.4.2a + 18 + & c.+ 2 (1) cos. 40.2a +10

n

In (4,2) let p =

3

2 .
a = 1
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n

( ) "
= P

{

º

but, i 90 %) = ******* - - - *

sin . 2 0 sin . 20

n + 1 ( ) "

{sin .
sin . 2 * } 12 (1 + cos. 2" +10 )

P { sin . 2" } ( i ) "
x P

(cos. 2" 0)

= P {4 }( 3)

* (1 - ( *)")

( ) ا"
ش

W

therefore, multiplying both sides by {

(1 )"
tan . 2"O sec . 2 " O

)"

= ( tan. 26 sec. 20) .(tan.46.sec.40)*.(tan.86sec.80)#...(tan. 2 " 0.sec. 2"o) ( * )”. (4,8)

and raise both sides to the power (9)
e N + 1

For @ put then we find
2 " +1)

n

01( ) + ) ?

{a sin . 2 )

{ 4 sin . e }

Р

{ ta

A

tan . sec .

2" 8

(tan. (sec. ) (tan. sec.,) (tan. sec.) ...(tan.. sec. )(*)".(1,9)

(
}(?

)

In (3,6) for a substitute 2a- 1 , put x? for x, and

2 cos . = x+ 1 + x

sin. 2a e

nti

)

=

n sin . ( 2a )" 0

= x P
n n

cos. 1.(2a) 0 +.cos.3 . (2a) 0 + & c. + cos.2a – 1.(2a) .

But

{ov Licensing

-6-67-,--

1 + 1 +&c.
1

pa - 0-13 (1-5)n

P4
1(2)
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then ,

ll

2P - 1 sin . 2a 0

1

ojot

1

sin . ( 2a )" 0

- Plava
ገፁ ... (5,0)

n n n

cos. 1 ( 2a) o+cos.3 . ( 2a) 0 + & c. + cos.2a - 1 . (2a (2a)"هأ

In this expression make a = 2, p = 2,

cos.4 " + cos.3.4 " 0 = cos. 4"0+ 2 cos . 4 " cos. 2.4 " 8 - cos.4 " 0 = 2 cos. 4"O cos . 2.4"0

then ,

n1

4 sin . 40

4 } in1+ 10

= P
--

{ 4 sin .4n+ 10 { .
( tan. 4 *. sec. 2.4do sec . 2.4*0}}:

80}}. {tan . 168 sec.320}*.. {tan. 4 " 0 sec.2 .2.4"e}} ....(5,1 ){tan.
tan . 40 sec. 86

For substitute and raise both sides to the power 2" +1, then,
4n + 1 )

0,2
1
+ 1

4"

4 sin . 0

2013

= P { tan .

{4 sin.

P {tan.sec.
oj?

{ tan.; sec. 9oje.{tan.o sec. {t

2n

201
A

tan .

2012
sec. .. (5,2)

16 ) 4 "4"

1 - x2 + 1

By assuming fx = x , px =
1 + x + x2 + & c.x2a ,

1 -X

we should find

p- 1

yx = 1 - x + x? _ & c. tała

and by pursuing the same method so frequently repeated, we should arrive

at the following results

1 n

72

X2

nt-1

x ? ( 2a + 1 )

*****
Р

{

1-31.2 + x?? - & c . + x20.2

V171 +212 + x2.2 +&c. + x20.2"

.. (5,3)
n

nti

- X21 - 2% 2a + 1



CONTINUED PRODUCTS . 17

n+1

(
sin . 2 20+ 1sin . 20

sin . 2.2a +10
(sin: 10y )sin . 2 +18

V + }1-2cos.2.2"0+ 2cos. 4.2" &c.+ 2 cos. 20.2"
р?

n

= P

1 + 2 cos. 2.2“0+ 2 cos. 4.2"0+&c.+ 2 cos. 20.2 " 0
. (5 , 4 )

sin . 0

sin . 2a +10

sin . 2.2a + 10

sin . 2 " 0 igy }
—

.

1

ра

SV 12a + 1)= 2(22)cos. 1.29+ 2(2a—1)cos.2.20 - & c.+ 2(1)cos.20.20

= P | (2a +1)+2(2a) cos.1.2"0 + 2(2a— 1)cos. 2.2* + & c. + 2(1)cos.2a.2"0 " }(5,5)

n

+ being used in ( 5 , 4) as a, is an even or an odd number.

In (5 , 4) let a = 1 , p = 2,

sin . 20 (sin . 3.2" +10) In

sin . 2.30 1 sin . 2n + 10

= P (
cos. 2 ".20-1) in

= P 12 - sec 2”.20,1:
( 2 cos. 2".20+ 1 ) 2 + sec. 2 ".20 )

=

sec. 40,

2 + sec. 40)

{ 2 - sec. 8871

2 + sec. 88

( 2—sec . 2" .24, I.

12+ sec. 2".20)
... (5,6)

For o put and raise both sides to the 2n + 1 power,
>

2 + 1

2

nt1

A 2

sin . 30

2 "

n

2

sin .

20

2 cos.

2"

20 ]
1

8

n n

= P = P

=

34

sin .

2

sec .

2 "

20

2 + sec.
2"

20

2 cos . +1

2"

sin , e

2

2

0,2

- sec .

2

n

2

sec. 0 2 2

o

- sec.

2 "

II ( 5 , 7 )

2 + sec. O

0

2 + sec.

2

o

2 + sec.
2" -1

In (3,6) make a = 1 , and also a = 2 , then,

1

1-72

nti ) 1

r2

E
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n

-
1 - x2 1 - XA 1

pa

&c.

Vitez p -1V1 + x4
= P

1-42"

Vīt.x2"})
. (5,8)

1 + x2"

}

1 +r 1 +r 1 + .23

V

1 + x3

n + 1

1 +23

&c.

' n

* }

(5,9)

Vi ** }(V1Fx + x* V17.2° + 2 **
1 7 x3“ + 72.3"

In ( 5,3 ) let p = 2, a = 1 , and multiply the result by (3 , 2 ) ,

X + + x²+1

nti

x2 - 1

nt1 nti

.2

+x1.2 +1

า น

+1
r ?- 1 22.

n

=مهب4+4+دوبورهبوراد
}

23.2

1 I去

26 + 2x4+ 2x2+1 rxl2+2x+ 2x4 + 1

|26— 2x4+ 2x – 1 1.22 – 2x8 + 2x4– 1

&c.
23-2"+222.2 +2 21.4,+1) ..(6,0)"

2 )

n n

23.2 – 2x2.2 + 2x1.2 +1

In all the preceding expressions the value of p has not been at all restricted ,

but may be a whole number or fraction , positive or negative.

They may therefore be considered as variable quantities, and their differential

co - efficients taken relative to p.

This will be much facilitated by the aid of the following simple theorem ,

relating to Continued Products, when differentiated relative to a quantity

which only enters as an exponent.

Let vn and Un be functions of n and p.

If

ř {a. ºr } = bu

P{{{a.Tapi

dy.vn d4 , u,

Then ,
= b , (dp )?

Which may be easily demonstrated, thus, by taking the logarithm of

the first equation,

Š {c. log .a } = un log. bn

1

-
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d9.0 ,

differentiating 9 times relative to p,

09.0,

S log. a. log.br
(dp)'

And reverting from logarithms to numbers,

d9.u

P 1 a. (dp) ? (dp )
· (6,1)

d9 . v ,

n

{a bin

If we apply this to (5,8) making a = 1 , the result will be

n 2

H.P On

nti) n.p - itp

pр "

+P

[ {1+

{ 1 - x ???
Ň S { 1-22 (6,2)

{1–7*! * +2 *}****

For x substitute successively tv and xv- ', multiplying the results and

putting

2 cos. O for u + 1 + 0-1

we have

n
+1

{ 1- 2x2 cos. 28 + 204 ??

{1–2.x2 "cos. 2n +10+ xé

= P
· (6,3)

n + 2

ËS {1–21 cos.2"0+x2 * } .p= 1

1 + 2x*“ cos. 2 " + 22 +1}.
n.p - 1 + p

р?

n + 1 ) 1.8-1 + P

Let'x = 1 , for 6 put 20,

= P
n

2n.p - 1 + P

р { {2 ...c2 cos. 2 A

n

= P
1 + 2

{ 2 sin . 20 } ?! Ř S {2 sin. 2"0} 2.p =
(6,4 )

{2sin.2** 3***
21.0–1 + P)

2 o}

Extract the square root, and make p = 2,

{2 sin. 20}' x 41-4 .
{ (tan . 2"0)"(sec. 2"0)*

{ 2 sin . 2u +10 %*

={ tan. 28)"sec. 20)} :{(tan.40)(sec.40)"}!...{ (tar. 2-0)(sec.2'0"}":.

By continuing the differentiations according to formula (6,1), and by making

the usual substitutions, we might derive other theorems which would become

gradually more complex, when expressed generally, though in particular cases

they afford some curious results, these and many of the above might be still

further extended by putting for p.
-

р
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multiplying or dividing the results, and making

p + l + p- = 2 cos. Y

this would introduce sines and cosines, &c. into the exponents.

We may obtain some other rather curious Continued Products, by com

bining the expression

+ cos. A) IA

COS .

- { +cos.

with theexpression of Euler's ( 1,1 )

2 cos.

2 {2 + 2 com.0}

{2 2 cos.+ 2001. }= { + 2+2 cor. c?

1 1

o

2 cos.

=aܕ

=

1 1 1

1
0

2 cos. 2 + 2 cos . 2 + 2 + 2 + 2 cos.{ 2 {2
cos.s.e}23 22

and in general

1 1 1 1/

+ 2 + 2 + &c. n- 1 terms 2 + 2 cos.2 + 3cos.e)".-(6,6)
2 cos.

2 "

Multiply and divide both sides by 2,

} 1

A 2

+ { 22 + 1

4

4 cos. + cos .

+ {2++++&c. {2+ 1 + 22+1 .0}..(6,7 )

+ + * +&c.com
o

COS.

2

=

+ .. (6,8)

금 1/2을 } 1/을

* When 0 = 0, the expression {2+ {2+ { 2 + nterms {2 + 2 } is constantly equal to 2,

This similar equation also is always true whatever be the value
whatever he the value of n.

of p , viz .

av takojarin +om+ * +oatia fatidata+ &c. to n terms
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In (6,6) let n vary from 1 to n ; then,

ë 2{z cos,ut = P { { 2+ { 2+ { 2+ to n terms + 2 cos.O} })
but,

P {acos. is

o

Ñ {cos. Ža
sin . sin . 0

21 x P = 21

A

2" sin . sin .
2 " 21

therefore,

sin . A

A

sin.

2 '

- P { 2 + 2 + 2 + to n terms + 2 cos.O } } .... (6,9)
C

and similarly, from (6, 7 ) and (6,8), we shall have

1 +
2" sin . 0

0

sin .

21

= P

i {font-++ {2+ 1 + {2++++ & c. + { 22+1 +22++cos .o}}.... 67
. (7,0)

and,

sin . 0
n

= P

{

1/를

+ A2
+ &c.

22 + 1

oll... ( 7,1)+ +

1

cos. O

22-1

n n

}}2" sin .

23

22–1 22 + 1 22–1

Many of the above theorems have a finite value, when the product is con

tinued to infinity ; thus, from (2 ) ( 5 ) ,

{1+ 22"} (7 , 2)= P

la = [h=2 ]....

- P {1 ++*+ 230"} [»= ]..[ = > ]....(7,3)

1

1-23

If we meet with a quantity of this kind,

ao

sin .

ch

be

sin .

C "

its value, when n be

1

αθ

I + &c.. .

comes infinite, may be easily found ; thus,

aө ao 1

sin .
(ao)3 1

+ & c.

сп 1 031 1.2.3

b Ꮎ 60 1 (60 ) 1

sin .

ca cun 1.2.3

1.2.3

(ao)

cen

(60 )

c²n

1

.

+ &c. be + &c.

an 1.2.3

F
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and when n becomes infinite, this becomes

a

αθ

sin .
с "

be

sin .

CR

therefore (2 , 3 ) and (2 , 4 ) become

COS.0 =

P {1-2
20 40

-2 cos. + 2 cos.

(40 + 1 ) " (4a + 1 )"

- &c. +2 cos.

14:49>} = > ]:(7,4

(10 –1) -1} [ = d.].(7,5)

20

cos. O =

P {2c
40-20

2 cos..

(40 - 1 ) "

40-40

2cos. + &c.+ 2 cos.

(

( 2,5 ) and (2,6) are, when n is infinite,

sin . 4a +10

4 + 1 sin .
P {{ 1-2

28 40 400)

-2 cos. +2 cos. -&c. + 2 cos .
2" 2" [h= 2] ..(7,6)21

sin . 4a - 10

{2c0

40-20

2 cos.

2"

40-40

2 cos .

+ &c.+ 2c08.30 - 1 } (n =2] . ( 7,7 )4-1 sin . e 2"

All the preceding Continued Products have been accurately determined for

any given value of (n) , those which follow are only determined when n is infinite,

and as these depend on a principle entirely different from the others, - I have

chosen to place them last.

Let фx = A + 4x + Ax* + & c. A.X"

For X , substitute successively x , x °, 2 , &c, ad infinitum ;

фх A + 4x + 4 x4 + &c . A.x"

A + Ax?+ A x4 + &c. A.xen

A + Ax8 + A 26+ &c. A.23n

4+ Ag” + 4+ &c. Ar ”

&c. &c. &c.

фх?

фх*

0.34

Add all the vertical terms, and suppose every even line negative ; then,

( x-A) – (px? – A ) + (px ?—A) - &c. ad inf.

Ar? A 23 Ar"

+ &c. (a , 1 )
1 + x 1 + x2 1 + x3 1+ "

A x
2 3

+ +
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Supposing all positive,

(px - A) + (pri – A) + (0x8 – A) + & c. ad inf. =

Aan+A x2

+
1-29

A 23

+ &c.
123 1 -X

( a, 2)
1 -X

dr

Multiply (a, 1 ) (0, 2) by and let
>

S ($c-A) di = fx

then,

S($x*- )̂ 4* / ( * —4) nade = fx

therefore,

fit - + + & c. = $ { -(-1), fin} =

= log. 1 : +{(1 +x)=(1+x )= (1+ x)"..& c.( 1 +x) " } .... (a,3)

f1 +f + Fio ***)

– log. {(1-2) (1-2)**1–0)...(1–259}...(2,4)

+ &c. ad inf. = S

The sum of these two is

fx

+

at+
&c. ad inf.

fr + fight to the one

{ 6

* A
x2

log. 673)
•

- X " **

1 + T ”.3.) "}
(a , 5 )

These expressions, though they apparently give the value to n terms, are in

fact of very little use , except when n is infinite . In that case, the value of

the series on the left hand may frequently be obtained.
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In ( a, 4) make

A = 0 A = 1 A = 2 $ = 3, & c.

фx =
( 1 -- x ) 2

fx = S(43–4)4t = Sam = 0-2

s {4 } = + {fitimta.S+ &c.} + C =

– log. { ( 1 - x) . (1-2) . (1-2)...& c.}

+

If x = 0,

+

+

11

= +

- C = i + + i + & c.

- { (1-1 ) + } (1-1-2 ) + } (1-1-> ) + & c.} -

+ + + 5 + &c.=

- log. { ( 1 -x) . ( 1 –x2). (1–29).. ad inf. }

- { } + + } + & c.} -

= log { ( 1 –2)(1–2*)(1 –2 )...ad inf.}' ".

-

+

.. (a ,6

If x ultimately equal unity,

-{ + + + ac}

+

E

{ ( 1 -x) (1–2°) (1–29)... ad inf.} -....(1,7 )

E =

{ (1- x)(1– xº) ( 1 – xº) ... ad inf.}'-*
x ult, = 1

-

-

E

= { ( 1 ) ( 1 + x ) ( 1 + x + zº) ... ad inf.}' " x log. { (1–2) *3}'-*
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E

= {1.2.3.4.... ad inf.}^= )
X ult. = 1

1 -X

In (a, 4 ) , let A = 0 , A= =
= n', A = n ", A = n ", &c.

n ' n " n ", &c. being the successive terms of the nth order of figurate numbers.

φα =

x

( 1 - x ) "
fx

=

1

(n - 1) ( 1 — x) -1

-1

n - 11

fxm
m m . (1 - x )" ~ 1

1 1-1

( 1 - x ) —----
+

2-1

(1 - x ?) 1
+

H

( - + &c. } + C =

log. {(1–2) (1 – 22)+ (1 –x*).. ad inf.* . ?

C = -n -1 { + + } + & c.}

3.(1+0+2+p=1+ &c.}

if x = 0,

1- (1 – x3)* - 11 11- (1— x ) n - 1
+

n -11. (1)"- 1

1- ( 1 - 2 ?)* -1

2. ( 1 + x )" -1

+

m

n

) 1-(1-2)

= { ( 1 –x):(1–2°):(1 –xº).. ad inf.}"

Let x ultimately become unity,

1

n 2n
n

opacz ...(2,3)· ( a ,8 )

{tnt + ša + &c. }

{ (1-2).(1 - x)(1 - x)..ad inf. }

cinsi + n + n + &c.

{0 .cesco . ad inf. 5...(0.9)
{1-23

-

Eo
r
,
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When n is an even number,

2n -1B, -1

2.3 .n ... n
11

N
n

E ....
(1-7)

= { ( 1 – x) (1– 20) ( 1 – xº)?&c.

B , being one of the numbers of Bernouilli .

Let, A = 0, A = 1 , A = 0, A = – 1 , A = 0, $ = 1 , &c.

2

px = x - x + x - &c. =
1 + x

f x = arc ( tan . x) = tan . - 1x

Substituting these values in (a, 3 ) (a, 4 ) , we shall find

tan .- 10 tan . - 17 ? tan . - 1X3+

+ + &c. =
1 2 3

12

는 -
- (- 1 ) 1 을

-- log.} { ( 1 –qur=1,} log.{ ( 1 – ) (1—-x"). ( 1 – xo) .. ad inf.}.(a,10 )Il

tan . - 12 tan . - 1x2 tan .-123

+ &c . =

1 2 3

log. P { ( 1 + zin -1ja lolog { ( 1 + 2)* ( 1 +2")" ( 1 + x") .. ad inf. } .... ( a, 11 )

In (a , 10), let r = 1 ,

T +

4

- 1

G + + + & e.)c =

= - - ? x- log. ( 1 — «) – log. { (1)+ (1 +2 +.x®)?(1 + 0 +2°+2°+24) ad inf.}

- log.(T=2)+ log (1–1)= – logº{ ( 1 + (3).6 ) .. ad inf .

{(1)". (3)". (5)* (7)...ad inf.ad inf.} .... (a, 12)
1 =

* tan .- or, sin .- ' x, signifies the arc whose tangent or sine is equal to x.
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Let $x =

Vinx2

fx = sin.- 10

1 1.3

A = &c.
A = 0, 4 = 1 , A = 3 2.4

sin , X sin .- ' r ? sin . -123

+ + + &c. =
1 2 3

11 4 .

= – 1 –log. { ( 1 – x).(1–2 ).(1–22)*: ad inf.} ....(a,13)

sin . - 10 sin . - 1x2 sin . - 123

&c. =

1 2 3

1.4 1. I : .

log. {(1 +x).(1 +x2)*.*(1+ x)** ad inf.}.... (a,14)

A number of particular cases might be produced affording some remarkable

results, but we will rather proceed at once to some theorems yet more general.

Assume

X ” cos, n

ne}♡ ( x , 0) = A x cos. 0 + $ xº cos. 20 + & c. = $ {A .zw

the limits of n being unity and infinite .

u

2

u?

Multiply this by ; for 8.put 20, and multiply by ; again , for @ put

u

30, and multiply by and so on ; then we find,
3

S A X " cos. n

no}1 $ ( 3,0) = 3 4

* ** (0,20) = 3 (A " cos. 2 no?

° ( 1,36) = x'S {A " cos. 3 no
ತಿ

3

&c. &c.
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Adding these together,

5 *$ (3,po)} = $ { Ar x 5 cm cor. pnocos }}

But,

u

cos. no +
2

cos. 3 no + &c.

S

ślin
cos.pne}= cos. 2n0 + en

- log { :1–2u cos. no + w }

3 Lei n.° ( ,pe)} = lar -- .0+1} =

- 3 log { {1-24Cox.18+W{ ") -

- - P {{1-24 con.ne4+ try"}

Making u negative, and dividing by the result, we have the three ex

pressions,

n

P

II
ll

l
l
u i

.. (a , 15 )

(-u)
2

23=و(.مه}

- 23 (1) 4 (68, pos}

{ {1–2u cos. no + 23)meyang 6 ]

( , }

= {{{ 1 +2u cos.no -vry'} 0 ....(0,16)

* 3 10

{ 6

tu?

A 2
23

n

P
1-2u cos.n0 +uY

11 + 2u cos.no + u ? )
... (a, 17)
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1

If u = 1 , since p and n are between the same limits , we have, by ex

tracting the square root,

E
= P (a, 18 )

$ {94,10 )

ï { a sin. * = ][n ..

s {-1-150 ,no }

{ s non 6 ][n = 1]....(a,19)
E

P { 2
cos.

S Sø (r, 2n - 10)

2n- 1

n

E

Рř n
{ tan. 29) [ = ][m ] .... (1,20)

In ( a, 16) let x = 1 , A = 1 ,

• ( x , 0 ) = cos. 0 + cos. 20 + cob . 30 + &c. =

1
for 6 put 20,

$ {- 4, ) p(1,0)} = -log. 1 + u

- log. 172 1
n

Р
{ 1 + 2u cos. 2n0 + u '}

1 tu

If u = 1 ,

n2

= P {2 cos.ne } = (2 cos.6 ) . ( 2 cos. 20) . ( 2 cos . 30) . . ad inf.

Let
1

^ = 1 , A - 12, 9-10
&c.

1.2.3

x ? cos . 20
x cos . O

x =

X cos. O

+
1

+

us cos . 30

1.2.3
+ & c . = E cos. (x sin . 6) - 11.2

Taking the logarithms of ( a, 15) (a, 16) (a, 17 ),

COS . a

- Flog. 1 - u - 2 {e cos.(rsin.0)

x cos. 20

E cos. (xsin.o)
u +

2

u +

X cos, 30

E cos. (xsin . 30)

13 w* + & c.} =1

H
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= log . P şi-- 2u cos . n 0 + u ?? 1.2.3....

=

L 륨

1–2u cos.® + evt {1– 2u cos.28+u*{1–2 ucos.30+ *{ad inf.}

or cos . O x cos.20 x cos. 30

U— 2 log.1 + u +2{€ cos.(xsin.2) + cos (rsin.26)» ++ cos.( sin30) = &c.1

n

log. P { 1 + 2 u cos.no + uº} 1.2....

풍 5 중 1

log . { 1 +2u cos.6 + uº { 1 + 2 u cos. 2 8 + u ' { 1 + 2u cos. 30 + u ?{ad inf.;

Also,

rcos, a

(€ cos. (x sin . )
4 u +

1

* cos . 30

E cos . (x sin . 3 0 )

3

u +

* cos . 58

E cos. (x sin . 50)

5 + & c.}

log. P !
-2 u cos. n 0 + u? ) 1.2.3 ...n

1 + 2 u cos. n + u ?

주 +

O + u (1-2u 2 + u

172u cos. ***(172u cos.28 ***(172u cos:30 ***{&c. ad inf.}
- 3 + u

log .

In the second of these expressions if u be made equal to unity, and also

x and 20 be put for 0 , we have,

cos. 20 cos, 6 0cos . 40

E cos, sin . 40 € cos, sin. 60E cos . sin . 20

– log. 2 +
1

+

&c . =

2 3

1 1 }1/ }

log . { 2 cos . 8 { 2 cos . 2 0 { 2 cos . 3 { 2 cos . 4 8 { & c.ad inf.} .... (a, 21 )
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Several of the expressions deduced in the latter part of this paper, are pur

posely left in their most general form ; should any one enquire into the results

produced , by assigning particular values to some of the quantities concerned ,

he will meet with many singular and curious theorems.

The formulæ in the former part, may by differentiating and by other methods

be converted into infinite series, and from these and the expressions themselves,

may be derived several remarkable properties of the circle .





ON

TRIGONOMETRICAL SERIES ;

Particularly those whose Terms are multiplied by the Tangents,

Co -tangents, Secants, & c. of Quantities in Arithmetic Progression ;

together with some singular Transformations.

TнEhe application of Moivre's Theorems enables us with little difficulty

to multiply the successive terms of any series whose sum is known, by the

sines or cosines of the terms of any proposed arithmetic progressions. We

are thus conducted to the general formulæ :

$ {x . & ° / ( - 1)} + f {x.ε -ov (-1)}
- A = A x.cos. O + 4x.cos.20 + & c,;

2

and,

f {x . £° V (-1)} - f {r.ε - (-1);

2 / ( - 1)
43x . sin. 8- + 4x4. sin. 20 + & c . ;

where f {x } is any function of x developable in the form

A + 4x + 4x + &c.;

and, E = 1 + i + + + & c.

1.2.3

1

1.2

By the help of these equations, and the resolution of (cos . 10)" and

(sin . iO ) " into the cosines or sines of the multiples of ië, we may with the

same facility express the sums of the series,

Ą + 4x . ( cos. O)" + 4.x? . (cos. 20)" + & c.

0 + 4x . (sin . O)" + Ax? . (sin . 20)" + &c.

When however we come to the reverse operation , that of dividing the

successive terms by such sines, &c. , the case is entirely altered, and no general

method has yet been discovered by which this may be accomplished. To

this may be referred the general summation of such series as

I
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Ą + Ax . tan. 0 + Ax?. tan .20 + & c.

A + 4x.sec. + 4.x? . sec.20 + & c .

&c. & c .&c.

Very little is in fact known of such series ;— their discussion is at once

laborious and ungrateful, and all that has been hitherto done, appears only

to have placed in a clearer light the extreme difficulty of the subject.

In the present Memoir it is proposed to exhibit a sufficiently simple

method of summing many series of these and other forms, for particular values

of 0 . The results will serve to give some idea of the complication attendant

upon generality in this point.

But before we proceed to this subject, it will be necessary to say a few

words on the Notation employed ; a considerable departure from that in com

mon use not being allowable on arbitrary , or capricious grounds.

Let f (x) represent the result of an operation performed on w ; f (x)

may be elegantly used to denote f (f (x ) ), or a repetition of the same opera

tion , and generally

fm + * (x) = fuf» (x) .

If now . we make n = mm, we have

fmf-m x = fºr = x ........... (See Note 1.)

Hence, f-mx must be such a quantity, that its meh function ( ) shall be x ;

that is, the negative index denotes the reverse operation . Now, in the course

of analytical investigations, it is indispensably necessary to consider sin . X ,

cos. X , log. x, & c., as mere numbers, functions of the number x , and by

following up the foregoing idea, we shall have

sin .” x = sin. sin.x ; sin . - r = number whose sine is x

tan . - 12 = number whose tan . is x

log .-' x = number whose log. is x , or, log .- ' x = gr

In like manner

.

E

a
ae

log.–2x3 . log.-"x = & ;
&c.{ log.–2x} ;; ...

* This mode of writing the inverse logarithms, will be found extremely convenient in ex

pressions much complicated with indices.
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1 .

211-7).log.{I.

= tan .

3. log .

It is not however enough to have explained a novel algorithm ; the

Reader must become familiar with it, and this before he begins to employ it

in actual investigation. For this purpose , and to avoid the necessity of making

any farther mention of the subject, we shall premise a few simple expressions

of great utility :

S1 + A / ( - 1)
. tan.- A =

( 1 - A / ( - 1) ]

2. - ...... tan .-- A + tan . -1B
SA + B ?

11 -AB)

tan.- { {x . £OV (-1)} – tan .- ' { x .€& -ON (-1); 1 + 2 x . sin . 0 + x ??

71-1) 1 - 2x . sin . 0 + x '

and when x = 1 ,

tan.-'{fºr (-1)} – tan.-'{£-ºv{=}}} = log. tan. { Ca ) +
7 (-1)

{ ( ) + ) }

4. tan-- { x . &° ( - 1)} + tan .- {w.e - ov ( -1)} = tan .-- {cos.8. tan .(2 tan-?x)}

cos .-! { °V ( -1)} + cos.-- { -OV (-1); = cos.-' { 1 - 2.sin . 0 },

6. ... cos. -'{€° V (-1)} – cos.-- {e -ov (-1)} = cos.- * { 1 + 2. sin. O }

ghi log. { + 3. (a sin. ). com. G - ) + (2. sin. )

We will now proceed to the derivation of some theorems, from which

many curious results may be deduced.

Let f (x) – A. = A, x + A2x2 + &c.

For x write successively

x . & OV (-1) 2 .220V ( -1) &c.

e -OV (-1) } ' € –20V (-1)

and let the sums of the corresponding results be added together, and the

whole divided by 2 ; thus

f {x .£ OV (-1)} + f {xię -OV (-1)}
A. } + & c .+ & c . =

5. - .

- »}.....8.8 T.

2fize

= {{...:(

A.}

)

- (-1)V (-1)

so / ( - )

+
&

1-8-01(-1) + &c.
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Suppose W; any function of i ; we shall denote by S { u; } the series

U, + U, + &c. ad inf. and in general by S { u; } , m ] , the series

Um+ 1 + Um + 2 + (See Note 2.)

by S {w: , [ian]
น0

Thus we have

s{f\8.8101-1} 4,812.6-300/=. - As} =

--)} =

= } $ { - A,x} {f(*) – A } ...

& Ov (-1)

& ioV (-1)= +${4:4".(nuovo

+ iB (-1)
E

-iov (-1
1 - E

{ 1 }

4428=ity( +1}} == f(x)..(1,1)
.....

Let the nth derived function of both sides be taken , with respect to x,

and for f { x } substitute D -n f (x) ; we have

inov (-1)
S -i.nov (-1)

C ...f {r.εióv (-1) } + €.

(See Note 3.)
Secondly, for x let us write successively

x . € 20V (-1) 2 48V (-1)
X.E

&c .

. ~ 20V (-1)} ' : -40/ ( 1)

and let the results, after being respectively subtracted, be divided by 2/( - 1 ) ;

The aggregate of the whole gives

f {x .&210V(-1)} – f {2.8-2.0 (-1)} } = S { A ;z'. cotan . io } .... { 2 }
S

✓ ( -1)

In like manner, by following the operations indicated in the first members,

we obtain the equations

(21–190V (-1)} - f { . €f
- (2

S
E

S

N(-1 ) sin . i e

0p {x . xi

2} {4
By introducing sin . in into the second member of this we should obtain

an expression of the same kind for S { A;æ'. tan . i0 } , but it may also be done

as follows,
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s {S-1)*:${2.6

1

cotan. 2i0 = tan . i 0 ,
sin . 2 io

In the equations { 3 } and { 2 } therefore, for write 20, and subtracting, we

have

it1f {x . £ 210v( ) - f { x € )
= S { Aix'. tan. i0 } .. { 5 }

✓ (-1)

Let us now, instead of continuing our geometric series to infinity, take

their sums to m terms only, and instead of equation { 1 } , we have

s { t${0.821001-1)} +,${8.8–2001-1)} – A} C. ]

s {A + 1)0} ] ....
= S

sin . (i.mo) . cos . i (m + 1 ) 0

sin , ie
{ 6 }

In like manner ,

sin . (i .mo) . sin . i (m + 1) 0
SA;x .

sin . io

ri = 0

i = m_

sin . io
{ 8 }

s {f} } CE ] =

+1)07 05:) ............471

s { = , =
( 2i – 1900 (-1)} + f { r . & -(2: — 1)0V(-1)}

- A,} [ n ] -

= ${1__
sin.(i.mə).cos.i(me) } [io]

f {r .€(21–1900 (-1)} - f {x. € - (21-190V (-1)}

= } [ = ] =

0}} 0 0] .

{ (41–3)0V (-1)} + f {x . & -(+i– 3)0V (-1);

= s{1,4
sin.(i.2mo),cos.i(am –1)0} (EO]

s {{{1.8(4 =»
(41–3)0V ( -1)} - f { x . € - (41–3)0v (-1);

8 (0501-1) } ( = O)

S

s { 2 / ( - 1 )

sin . (i.me) . sin . (i.mo)
= SA;x. .

sin.ie { 9 }

S

Ao
=

2 = m .

sin . (i . 20)
• { 10 }

2 / ( - 1)

K



38 TRIGONOMETRICAL SERIES .

sin. (i . 2m0) . sin . i (2 m - 1 ) 0
= SA ;X.

sin . (i . 20)s{A.. =130} [ = :][ .......... { 11 }

By assigning particular values to e, we shall arrive at the actual sums of

several series. Thus the second member of Equation { 6 } becomes

1

But S
cos. i . -

A,

S {A;z". (sin.i:2m0.cotan.10 – 1 + cos. i . 2me) }

{ Aza". 2mo}}

=f (x) – A ,
S.f { r. 2m0V (-1)} + f { x . ε = 2

+
—2m @vi- ))}

}
and consequently,

s {A;x". sin . i . 2me.cotan . io}io} [i = d] =

s{f}2.22001-1)} ,ffr.4-2006–» 4 } [ EO]

+$ {= } - { fix.82m07/ >"}} + f {p.€6. € – 2m0V ( )

.... { 6,1}

(2007-) . ( )

= 2.5

2

1

>Suppose now @ = n being any integer, and for every

even value of i, sin . i . 2mo vanishes, but for every odd one it becomes

(2n + 1 ) .i + 3

2

( 1 )

for i therefore write 2i - 1 , and we find, for these values of 0,

S

-A2

.. { 6,2 }

s { - 1}'+!.Api-1.zi-acotan. (2i – 1 ) 0 } [iro]

2.5{ f{t:£230V1-1)} + f{v. –280 (=1)
]

= ( - 1 ) ". { + f (x)

- {{{ .&?movi 1} £,f{8.8–2mºv/>"}}

Let us denote the right hand member of this by Q.r.

Again, from Equation 7 ; for the same values of 0,

S { A?i=1 x*– * . cotan. (21 — 1 ) 0} + 2.S {Aqi-23z i - . cotan : (4i – 2) e} =
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= 2.5 {f} € }
2.£2107 (-1)};- f {x .€

-210

ian
mov ( }

2 / ( - 1) 27-1)

Let this be called R, We have then

Qo R , or (Q + R), = (See Note 4.)

.s {A -apti-e.cot.(4i– 2)0 } + s {(1 + ( = 1i++)Azi-12-1.cot. (21-1) }
2.S

or,

$ . {Asi-s 24–9. cot. (41 – 3)0+ Adi -2 * ~ .cot,(4i – 2)0} = } (Q + R ),. .{ 6,3 ;
In like manner ,

S

s {Asi-2 20952.cot . (^ i – 2)0 + Aqi- 1 2 -i 1.cot. (^ i – 1)e} = } (R -- Q.--{ 6,4}

From these, by performing the operations indicated as follows, we find,

{ 6,7 }4

{ (Q + R ), + (Q + R)-;} = S {A« <e xai-e.cotan.(^ i – 2 ) e} ......{ 6,5}

{ Q + R ), – (Q + R)-x} = S { Adi-a *****. cotan. (11 – 3)0}cotan. (4i – 3)0}...... (6,63

{ R - Q ), - ; (R - Q -} = $ {Aqi= 1$ {Ax=y xti- !.cotan.(* i – 1)0} ...... {

* { R. - R_;} = S {Ași- x*i-!. cotan.(2i – 1 ) 0} .... . {6,8 ;

s {{ -1 }' + " . Azji -1 28i - 1. cotan.( 2i – 1)0}

From the equation { 9 } , whose second member = $ {A;a".

Qir

1
- cos. 2imor

2 , sin , ia

zime?
we find,

221-1 x4i- 2

sin . ( 2is {Azi-1 -1) } + 2.8 {A i-2 sin . (4i -2) }

= 28{ f{1.8123–130/1-1)} - $ {2.4–621–1300(–1);= 13& =1 – v } CEO ]
S

Let us for a moment call this Kc; and we have

( K , + K_)

z4i - 2

sin . (4i 2)0).....
{ 9,1 }

( K, - K_.) = S {Agi
zli - 1

(2i -- 1)?? ..
ܩ

ܐ

ܟ

ܬ

sin . { 9, 2
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70

we find at once ,

x
21- 1

s
s

= 2.S

2

In equation 10, for e , writing ( mm )

{Agi- 1 cos. (2i --1) }

2.s f{
$ (ti– 3)0V (-1)} + f { v .ε-(41–3)0V ( -1)},

- A.} [ie m ]. (10,1

Let the equation { 6,8 } , be subtracted from ( 9,2 } , and we get

( ( K – R), – (K – R )--) = S x ?i = 1. tan . (2i–1).- ..... { 6,9 ; 1 }

In like manner, by subtracting { 6,5 } from { 9, 1 } , we get

a { K - Q - R). + (K - Q - R)-1} = S {Ani- qti-e.tan.(4i– 2) ;} .. (6,9; 2 ;

Next,let 8 = ( 20+ ?). 6) . And we find, in the same way,

S {Azi- 1 **- !. cot. (27 – 199}

ſs{fls.42.162. 2i006-1)}--- {«.8–2001_"}}}31001- } [ -]2 ( - 1 )
{ 7,1 }

- f {x.
1. e2mov (-1)} – $ {x.8–2mOv (–1

2/ ( - 1 )

- 1)

= s {f{•.8126-13001– ); - fr.e 121=1& i=1}} CEO )...( i= 19,31
27-1)

Lastly, let 0 = ( ) . And equation { 10 } gives , if we put

£(ti–3) (-1).@ } + f { .8 -(+i– 3) v ( - )}

T , for 4.8{f} : i 1 - A CO ]

(53 ". (T. - T ..) = S {Azimj2 sin. (2i – 1) "1

4. (T. + T_-) = S {A -2 -2)} ... { 10,3 ;

}

and,

2n +1
.

4m

2

( -1 ): + 1 ( -1 )"
+x21–

1
1-iܕ

cos.(21-1)0 ) }....{10,2

and,

24i - 2

cos. (4 i
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In like manner, if we call the function

{ x . €41–3) 0V ( ) } - f x.ɛ -- )

2. (-1)

Ur, we shall find,

( -- 1 )" + 1 ( -1 ) i + 1 ( -1 )"

cos. (2i – 1 ) sin . 1 )2 :( U.- U_-) = S {Azi-yxi

à {U. + U_r} = $ {Avi- s .

r4i - 2

{ 11 , 2 }

sin.(4i- 2) }

We have not as yet assigned particular values to f (x ) ; We will now there

fore select some of the most remarkable forms, principally to illustrate the

application of Equation { 1 } , which indeed affords an inexhaustible store of

curious results. The other Equations will be useful in transforming certain

series into infinite products.

ಟಿ

Let f (x ) = tan.- " x = + &c.

X

1 .

1 3

The Equation { 1 } by the help of the 4th of the formulæ in page (35), gives

s {tan.-' (122 io) }
cos. il tan.- r.

1

if x = tan .or, 1/2
A.

A

tan.- ' ( tan. A cos.0) + tan.- ' (tan. A cos.28) + tan.- ' (tan . A cos.30) + &c. =
2

or, which is the same thing,

11 + 1 (-1). tan. A.cos. i 0
P

11-7 ( -1) . tan . A.cos. io)
STAD

where P { u; } = U , U2 .... U . and P {0; [ian] u1 + 1••••••

Let now 7 ( -1) . tan . A = a, and we find

p {1ta.cos . 10)

-a.cos. ios ( 7a !...... (1,33 )

TT

If A = we have

T

1

tan . cos . O + tan.- ' cos . 20 + tan.- cos. 3 O + &c. = ....{1,4}

L
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The equation { 1,1 } gives us

- tan .--- = $ { zinov
)tan.--( x.EiOv (-1), + & -inos/(- 1)

tan.-" (v.2 +* (-1)}

S {cos.ino{tan.-'(3.8i8 (–1)) + tan.-'(x.e id ( 1))} –sin.ine.
tan.-'(x.εiow (-1)) – tan.- '(x.€– its / ( - 1)

1.5-10x1="))}7 ( -1)

10) .

as

= $ { cos. (411-39

2 x cos . 10

1 - X ?

sin.ine.log: ( = 29.sin .18 + x2cos. ing . tan . - 1

1 + 2 x.sin. i 0 + ra

1-2x.sin i xr

.

2

Let x = l , and we have

T

S

4

Now, S

$ .
.cos . in 0 – sin . ine . log : {tan. G +. ( )}

{.. cos.ino} = . S (cos.in e)

${log.( tan.( +6 ) **

T

;

4

thus,

O

Whence, writing 20 for 0, we get

1 = P { 1,5 }

(See Note 3)

P { ( .. ( +10))*.**
if n =

1 = { (tan.{5 +10})+ ****}-

- {tan.( +0) } : {tan.( + 20) }in="{tan.( +30 ) }fin."&c... ( 1,63

Analogous to this is a theorem of so singular a form , that we shall retard

our immediate progress to give it insertion, though derived from principles

somewhat more extended

1 I 23 25

tan .- ' x =
- &c.

+

1 1.1 3.1 5.1

13 29 x15
ب
ر
ا
ی
-.tanن ' (x) + &c.

Adding vertically
1.3 3.3 5.3

25 x15 x251

tan . - * (x)
5

&c.

1

+
1.5 3.5 5.5

1
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stan.-!(S

tam ir ties"} - ; {lºg.( **) *- log. ( + + &c.}=

s { log. ( ***) ***

(-1) +1

=

In like manner, writing x- 1 for x ,

(-1 )+1

rtan . 1

S (x .- (2-1)

21-1 "} s {log: ( -?) ?i=1}......{12}

and subtracting

(-1 )i+ i

stan.-' (.x21–1) – tan .-- (2-(2-1 )S

=

as->} = $ {log: (-1)2 =1

$ { * log.(- 1)} log.(-1).S (SI)

V1 !)... = 11-1).

Now, let x = £ 20V ( -1), and we get

or ,

E

s {sisi tan."(81***821–Pytan,-*(814–2001–)) }

- P {(tan { +(21-130]i }) }; and for 8writing 6 +0)

= P{ (tan. + (ai–190})

....

구 }

= (tan. 8) . ( cot. 30 ) . (tan. 50 ) . & c..... { 12,1 }

To return ,

By differentiating { 1,3 } , with respect to a, we find

cos. ¿ 0

26 }

1

S
. { 1,7 }

1- (a.cos.io 2 ( 1 - a

The application of equation { 2 } , and the third of the formulæ in page (35 ) ,

gives
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24i - 3

. cotan . (ti– 3) 41 ?
42-3

P
= P

{+
1 + 2x.sin . (210) + x ?

1 - 2x.sin . (210) + x2)
{ 2, 1 }241-7

€ 4i - 1
cotan . (42– 1 ) )

.

T

If x = 1 , we obtain , writing e for e,

2

P

tan . (43–3 )

E
42-3

tan. (4i- 1) 0

E
4 2-1

P

tan. (210 - )

tan . ( (2 i - 1)0-3)

= P { cos.(ai– 1)e+ sin.@
cos . (4 i – 1 ) 0 - sin . O

4
{ 2,2

in virtue of the formula,

tan . A sin . (A + B) + sin . (A– B)

tan. B sin . (A + B ) – sin . (A - B )

Let us next suppose f(x) = 8", and we have

X.cos. i 0

s {
E.

... ( 1,8 )
...

.cos. (x sin.i 0)– 1 }i9)-1 }= - } { – 1 }

and, by the equation { 1,1 } , we find, making n0 = 0

{ cos . { iq +x . sin . i0; }

x.cos, in
E2

S E.
{ 1,9 )

2

and if x = 1 ,

s {

cos. i 8

E .

cos. (i $ + sin. i0)} { 1 , 10
2

It were easy to multiply examples, but as most of the equations derived

from { 1 } carry somewhat of indistinctness with them to the imagination, we

shall confine ourselves to one more , viz .

1

P {1- 2x.cos , i 0 + } = { 1,11 )
X

which is easily obtained, by making f(x) = – log. ( 1 —r) .

Examples of the actual summation of series of tangents will be given here

after (See Note 5 ) . Meanwhile, we have seen that the foregoing summations

depend entirely on the commensurability of 0 with a ; when this condition holds,
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or .

T

the coefficient tan . 0, tan . 20, &c. recurafter m terms in the same order ; and thus

it happens, that the sums of these series consist of as many terms as there are

o

units in m, the denominator of

IT
In other cases we may without

hesitation affirm , that the summation of such series surpasses the

analysis . In fact, the same formulæ which represent their sums, would enable

us to assign the sums of such series, as

f(x) + f (x²) + f( x )

powers of

{ f{xv }– A ,} + { f {xvo} A, } + &c.ad inf.

To shew this connexion, we have

f (xv) – A. = A, xv + A , 22 v2 + &c.

f( xv %) – A. A, Xv? + A x ? vt + &c.

&c. = &c.

and adding

}

s {A;z".
vi

s { f(xrm) – A }= $ {A;x".
= S

1 V?

V ?
-

=

A; xi .

ilog . v

V - 1)
€ 2V (-1)

i.log , v
✓ (-1) ✓ ( -1

2v1-1)
E

i.log . v

2

Aix COS .

. S

i.log . v i .log . v

+ 7 (-1). sin.

2 / (-1) 2 ( -1)

i.log. v
sin .

21 (-1)
2 / ( - 1)

- S A;x!+
A ; x

2 (-1)

.

log. v

✓ (-1s { cot. i (6 -1)) }

- - } if(a)–A }-avi- ). S {2,4 ". cot. i (zlomen) }

For x, write xv", and we have

s {f(* v*+i)– Ao}

- } (5( e“)– A.) – ani-1). S {A; (ra)' . cot.i (z 10%-1)) }
0 M
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and

s { f(Iv) – A,} =

* 15()–A,}-vi -1 $ {A,#". cot. i (ebok ) }
and subtracting,

s { f (xv) – Ao} [139] -

-- } {f(sum)– 5(3)} -əni-1).S{4:" (e*–1).cot.i.. ${A,47'(oni–1).cot.i.(zboku)) }

Here then we shall conclude the more connected part of our remarks ;

contented with having exhibited in a tangible, and not inelegant shape, some

fragments of a theory as yet waste and barren , without laying claim to the praise

of very profound investigation , or even of absolute originality. What farther

we have to offer on the subject, being of a miscellaneous complexion, we shall

prefer giving in the form of a note. See Note 5 .
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NOTE I.

fºx = x. This equation may be considered as the characteristic

mark of the correctness of the notation we have adopted for the successive

functions of a symbol x. Unless this condition hold, any equation, such as

f" (x) = $ { n, x }

will not continue true for the negative values of n . We may here remark, that

the notation adopted by the Author of the Logarithmic Transcendants, is cal

culated in some degree to mislead the mind into a supposition that the successive

logarithms of x are represented by the symbols L ' (x ), L² (x ), &c. Now if we

-1+

consider the value of Lº (x ), we shall find it equal to
instead of r . The

I

criterion here mentioned does not therefore hold in this instance .

When we consider the ne function (fr) of a symbol x as a function of two

symbols, n and x, it becomes interesting to obtain an expression for it in the

form above mentioned .

f" ( x ) $ { n , x },

Now in some simple instances this may be accomplished by mere substitution ;

for example,

f (x)
b + cx

ar

a .

f ? (x) = ff (x)

ах

b + cx

ar

b + c .

b + cx

ar

12 + cx (a + b )

a’x

a .

btc .

b2 + cx (a + b ) ac

f : x = ff ? x ax
68 + cx (a²+ ab +62 )

62 + cx (a + b)

and so on , till we arrive at the equation

a ”.X

fr ( x ) =
- b )

b" + cx
a - b

;

@a
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Ug- 1

or ,

but, in general, such an operation would run out into excessive complexity, and

that, without bringing us at last to the desired end ; we will therefore consider

the subject in another light.

The nature of the operation f being given , and as we know that f *+ 1(x ) =

ff * (x ), ifwesuppose f* (x) = U ,, we have an equation of finite differences,

0 = U +1 - f (u ) ,.......(a)

of the first order, for determining the nature of the function of x which u, repre

sents . Now in this expression the symbol x will not be explicitly found, but

u, = f * ( x ), is a function of x. Moreover in the substitution of f (x) for x

in the expression of f (x ), the symbol x remains unaltered . The only way in

which x can enter into the constitution of u ,, so as to fulfil this condition , and

remain at the same time arbitrary, is by means of the indeterminate constant in

troduced by the integration of (a) . This will be evident also from the following

consideration ;

Sinceu, = f (Ug - 1), we have, = f - u ,

thus, U, = f - u, = f - { f (x)} = that symbol whose function (f)

is f (x) U, = X.

Now let C be the arbitrary constant in the integral of (a) .

we have, u, = F { z, C } , consequently Ug = F (0, C)

so that C is a function of u, or x. We may here remark, that if we can procure

only a particular integral, or solution of (a) , we shall be enabled to assign the

form of f = ( x) only for a particular value of x , viz. the value which u , takes in

that case. To illustrate this theory by an instance, let

a + Box

f (x )

the general rational form of the first degree in x.

We have then ,

,

U. + 1 = f
Y + .u . ”

or, 0 = 0 ;+ 1 • U + ( ?) • U: +1 ( ) .«U , – ( ) ......(b)

The complete integral of this equation may be obtained as follows,

A , + B , H
Assume

C , + D .. H
. (c )

7+0x

ala
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H being an arbitrary constant, and we find

A ,+ 1 + B ,+1.H

C.+ 1 + D.+1. H
= U. + 1

a+ß .
A , + B , H

C , + D ,.H

A , + B , .H

C; + D ,.H

{aC , + BA ,} + H . {aD, + BB,}

{ y C , +8 A ,} + H . {7D , + 8B ,}
7 + 8 .

0 =

}

And equating similar terms, in order that H may remain arbitrary (so as to obtain

a complete solution ) we get four equations,

0 = A ,+1A ,+1 - aC, - BA, 1 B, + 1 – aD. - BB,
and

0 = C2+1-7C, - & A, 0 = D,+ 1-7D, -8B,

whence by elimination ,

0 = C: +2 – (B +») . C: +1+ (By – ab).C.)
A, į ( C. + 1-7.C.)

and

+2 – (B +9) . D. + 1 + (Bay - ad).D , B , = } (D: + 1-7.D.)0 = D. + 2

From these, integrating, and writing

B

B %

Buy

8ܕ -- { )+8} .....- = 6.7 ")
3

2

we obtain

C. = h . (̂ + u : + k . (̂ m)*

D , = f. (1 + x)= + g . ( - M :

A. = > { . ( + m) " . (A +-- ) + k . ( – w) .(A --->)}

B. = } {f.A +w).(1 + u- )+8 .(2 -x):( - )}
7

h, k, f, and g being four arbitrary constants. These values being substituted in

the expression (c) , it becomes

(1 + - ) + ( - - ) .v*.
sk + g . H

th + fiH
U; =

sk + g . H

Th + f . H )

1 (a + u - m ) + ( -uy.v.KK

क 1 + 13.K (d)

O
s
l
o

11

1 + v .

......
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to one ,

1

.

Thus we see that the five arbitrary constants H, f, g, h, k, reduce themselves

k + g.H
= K, in the expression of u,.

h + f.H

Let us now see what function K is of r. For this purpose, let z = 0, and

(^ ) + ( -M- ) . K
Uo = X =

1 - K

whence we conclude,

8.2 - ( + Mary)

(X - M - y ) -8.x

which substituted in (d ) gives, after all reductions,

{ a + ( - u ) .x } ;v- ía + (w + m ) . X }
Uz = f= (x)

{8.x - ( w + u ) } . v - 18.x- ( w - ) }

which , it must be observed, answers equally for negative values of %, and will

therefore serve as a formula of interpolation for fractional or imaginary ones.

K =

The cases where we can find expressions for f : (x) , when f (x) is irrational

or above the first degree, are very rare, but as they are (as we have seen ) con

nected so intimately with equations of differences, we will present one or two more

in this place, proposing to make these equations the subject of a subsequent

Memoir, for which we shall reserve the remainder of our examples.

2 x

If f ( x) * we have u ’, . u, + 1-4, + 1 + 2u, = 0
1- x2

an equation whose complete integral is

1 - C

uo = X =

u, = 7 ( -1) .
1 + c

c being an arbitrary constant. Thus,

✓( -1 ) .
Ito '

from which equation, we find

1 + x.v ( -1)

1-x./(-1)

consequently,

{1 + 8.1 (-1)}" – {1 –x . (-1)} ?
f(x)

{ 1 + 0./(- 1) } + { 1 - x : 1 (-1) }'')
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If f( ) 2 x2 – 1 , we have
0 = U2 + ) 2.u’, + 1

(c + 0-33

1

and, integrating,
267

- 2

c being an arbitrary constant.

If we make u, = x , as before, we find 0 = 1 - 2cx + c ?, whence

f• (a) = }} {{x + ] (zº– 1 ) j ++ ( x - (x2 – 1 ) 3e "}

NOTE II .

THEhe sign S is made use of in preference to £ , not only to avoid the

complication attendant on expressing the (i + 1 ) 'h term of the series, in place of

the ith ; but, which is of more importance, to avoid .introducing the symbols

and algorithm of the integral calculus, in the course of investigations from which

the ideas annexed to them , and the operations of that calculus are excluded ,

the shadow of deep research without the substance. The best Authors have not

always been scrupulously careful in this point, the varying their notation with

their subject, and keeping the former subordinate to the latter . Thus in the Calcul

des Fonctions, the system of accentuation, however well adapted to explain the

general theory of functions, becomes unmanageable when applied to particular

cases , or functions actually expressed , and inappropriate, when function in gene

ral is no longer the prominent idea . Yet to this system the subject is forced to

accommodate itself, to the no small embarrassment of the reader who is not already

familiar with it by other roads.

NOTE III.

The Equation { 1,1 } in the form it here stands, involving no diffe

rential process, is free from any difficulty which may arise from supposing n

fractional, negative or imaginary. “ It thus, ” to use the phrase of a celebrated

Author * , “ acquires a greater generality, and supposes no longer that n is an

* Legendre ; Exercises de calcul Integral, page 279.
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-
-

integer," or even real. Let' then n =
φ

J (-1)
transferring our ideas from

numbers to mere symbols; and we have

{€19.f{r.& iov (-1)}+ -1°.f {x . € ov (-1; } = - f(0)
-iv

s { દ

Let the neth differential coefficient be taken with respect to p, and we get

0 = $ {i.(f{2.61€ / >"}.& * + ( -1)":f { 2.5-1001–13.6 - ** ) }

But the operation by which we have arrived at this conclusion has been so

absolutely singular, that we cannot leave the subject thus abruptly. We have

already exhibited algebraic expressions for certain th functions in terms of % ;

such as,

a . x

f (x)

ar

b+ cx

and f ( x)
a ’ - b

b + cr .

When x is a positive or negative integer, this gives us the value of f - (x ) in

a form capable of being verified by trial. But, if z be fractional or imaginary, the

only meaning we can assign tof (x) is , that it is that function of % and x which

is here connected to it by the sign of equality . In this sense, and way of con

ceiving it, we may take the differential coefficient with respect to %, as well as x.

Thus in the case before us,

df: (x )

dz ) = 2. (1-0 ).( )'.log. (3) .{1- ( * ):( 1- (*)') }"*

In the same way , if we have

D” f (x) $ (n, x)

When n is not an integer, we may look upon this equation as the definition

of Da f (x ), and thus n is reduced to a mere symbol. In this view of the subject

we shall offer one or two singular, and not inelegant formulæ , depending on

imaginary, and fractional differentiation .

We know, that

dr ar

dxn
= a * . (log. a) ."

For n write successively 0/( - 1 ), and - 0 / ( -- 1 ) , and we obtain ,
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E

supposing a = €

devi- 1) . € er

dxoÖV (-1){ C M ) + ( a )}

+

€ € x. cos . O

and

dov (-1)..ex

dxov (-1)

d -ov (-1).€

dx - 07 (-1)

and consequently,

dov (-1). €

OV(-1 )

dev(-1) . €

ET

E

(

:) +

d -ov (-1).

dx -OV (-1)

d - ov - 1 )

dx -07 (-1)

= v(-1 ) . tan .6EX

+G71-46 )dxºv (-1)

Let us next consider the form of mixed differences,

dm A " Un

*42)dnm

we know that

A" Uz = Us
.Uz

+

n (n - 1 )

1.2

Ux & c.

^" wx2

consequently,

d A " Uz du , du ,

2014 Cain:) - &c.)
.

dn dn )

DAU, +

n (n- 1 )

+

d (n - 1 )
1 : 2

D { n . ( m - 1 ) }
ur

1.2

+

&c.

- 2

dux

= An
+ $ {(- 1)

D { n . (n - 1) .... (n - i + 1) }}

1.2 .

• Uz

do

Now ,

d us

du Conta) ( )= C ).- Axodz

for X , = xo + % . Axı ; and consequently,

du,

Gay) - ) (ئ).۵= Xo ( n.). AX
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Thus we have,

CAM)
dA " un

dn

= AX.AM
D { n . (n - 1 ).... (n - i + 1 ) }

1.2.3 ....

Uz

.. } .. (a)Note + $ {(- 1).

write cou ), and the equation becomes
Now for uz

sdn" con1

©
dn

du,

- Δ.Δ. com + $ {(- 1): Din(n −1)....(n =i+1)?
1.2 .... •dx , i

Take then the differential coefficients of (a) with respect to n, and for

•du ,

Д*

in the second member, write this its value ; and we find

dx

dn

dº Aku,

29*4 ) = (4.x) AM= (1 x) A" CLAI:) +

+ {.s {(- 1): D {n(n - 1)....(n =i+ 1)}

+ i..s {(- 1): DⓇ{n (n − 1).... (n= i+ 1);

Δη (6 )
1.2 .... i

(n -i+1)}. 63 )}.4

}

c ), and

Ur

1.2 .... iܐܐ

In the equation ( a ), write instead of ur,
and we find

{
dir

dn

d ? U.
d'un D {n (n - 1 ).... (n - i+1) }

) + $ { (- 1). ņ .Game= AX.AM :) }d x² 1.2 ...

which being substituted in the differential of (b).with respect to n, gives

d 'AU

A®(-) C ) +

D

. :) } .(4x)dx ,

dn
= (4x)». A”

d ? U1

(***1.2 .... i n-i
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3.2

1.2
Canon )})} .

AX

1.2 .... i

dm - lus

G1.2 .... i

+ s { (- 1 ). P {z( - 1)....(x -i + 1);

+3:21. s {G- 1) P =(n -1 - i+ 1) .u,}

Thus, continuing the same course of operations, we arrive at length at the

following theorem ,

C ) = (A x ) ". A"anna Cont) +

+ ".s{(- 1).
D { n (n - 1 ) .... (n - i + 1 ) }

d :) }.(A2)-1dx

m ( m - 1) Dº { % (0-1) .... ( n = i + 1 ) }

+ s {(- 1): D :) } .(Ax) --1.2

Dm {n (n - 1) .

s {(- 1). (n =i+ 1)]. ,, }

We may be led to bestow more attention than has been hitherto done, upon

this subject, when we consider, that in many equations, the index of diffe

rentiation is actually variable. Suppose, for instance, it were required to inter

polate a function wz,y for fractional values of x ; Uş, y being given by an equation

of inixed differences.

0 = A" Ur, y + a An- (1 ) + b An-2 “) + & c.

dm - 2 Ux

dx

+

1.2.... i

m ... 2.1

+ .

1 . 2 .... m 1.2 .... i

d ? Ur. y

dy

x varying according to the characteristic A , and y, according to d. The com

plete integral of this equation, or the general expression of us,y , is

U.x, y = E

da di( y dr 02 Only
+ E - ) +

dys dya

Øi (y) , .... Dr (y) denoting n arbitrary functions of y ; and a ( i ) , a (?) , .... (n)
the n roots of

0 = 2" - &c .azn- 1 + uzn–2

This expression then will assist us nothing, unless we have means of assigning

the values of dp,(y)) for fractional values of c. To fix our ideas let us

dyr

take n = 1 , 0, (y) = $ ky ,
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0 = Ux + 1, y
and we have Ur, y + a .

(2 )

y(++ ) + x.log.(- ak)
Uc, y = €

since d * , (y) = gkv.km

Now for x substitute x + ?. + r (-1 ) , and we find
9

trv(-1 ) , (* + ) + r . log. ( -ak)

Ur, y = E

which it is easy to see, satisfies the condition proposed.

E

with X,

NOTE IV.

By (Q + R). , (K - Q - R),, & c. are not to be understood the

products of Q + R, &c. but simply the quantities li + R ,,

K ..- Q - R , &c. In the same way, if we had any combination of operations

Ar+B

C. + D ,
to be performed on x , we might express it by the same com

SA + B )
bination of the characteristics, with the symbol x annexed thus

C + D ),

such as

F (x)

NOTE V.

We propose in this note to give a connected theory of the equations of

which { 12, 1 } is an insulated case . That equation as well as the theorem

{ 1,6 } has something so very singular in it, as may well demand a more

particular attention . Let us then suppose

A + A , + Az.m ? + & c.

f(x) anta.x + az.x² + & c .

We form then the following series of equations :

A..f (v ) = A , Q. + A, a, v * A, a , v? +&c.

A , . % . f (vx) A, % . 2 , + A ,2 a, vX +A, za, v2 x? + &c.

A, . % . f (vxa) A , x a, + A , z ?a , vx? + A , zº a, v? x4 + &c.

&c. &c. &c. &c. &c.

=
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and adding vertically, we find

$ {4,3 ".F (0.x } = {av".F(3x)}; [ ']

Let us suppose

F (x) = – log. ( 1 – x)

ម
1
1

+

a
ป
ล

+ &c.

9

and the equation becomes

P { (1–67)*•} - P {:- .100)}........{A}

For x write successively x .& ° / ( - 1), and x.e -ov ( -1), and first, multiplying

the results together, we obtain

P {(1-2 m.tr.cos.10.+ *29"*} =

= p{
- $ ($ { w.100/= 1;+5{ox.c1 ) } +5{ox! c-10V( -1 )

}}}

P

{.E.

Again, let the first result be divided by the second , and the whole raised

and we find

P

to the power I -1)

- {stor.covh=1)iov (-1)}= 5{vx!c *0v (-1)

}}

s)

27 (-1)

=

E.

Q; vi

-P {( 372
1-xxi. & iov (-1)

- 2x!. € -
i0

•

- 1 )Q; oi

log.

x x '. sin . i 2

1 - 2 x. cos. i 0

z x' . sid.io

it
| -- % Xcos. i 0

27 (-1)

= P (71 )

- Qidi.tan . -
zwi. sin. ¿ 0

1.cos. i 0}

- {
E

P
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and consequently,

{ - { . "S

2 V ( )

xx sin.io

1 - Zxi.cos.io}

Suppose now % = 1 , x = 1 , and, writing 20 for 0 , we get,

s

$ {:.
f {v . £210V (-1)} – f {v . £ -210V (-1);

1} = ${0,0".tan."(cotan.10)}/ ( - 1)

s{ax .( +1 , -10 )}
S

n being any integer.

Now , s {azu.2011 } -
(2n + 1 ) 7

.f (v); S { a; v' . in } = Bv.df(w)ov
df v

dv2

Thus we have, at length

s {{ (f{08?1021 Aine-zivot-"}) }=» ) }=(2m+1)3.560)=
-θυ.

df(v

du

Had we supposed z = -1, x= 1 , we should bave got

{v & 210V (- ?)} - f {ve - 210 (- 1)

2 / ( - 1 )
= np.f(n) + 8v . af(o)......{ C }

du

Let these be added together, and we get { since the n's may be unequal }

s {u -a ( ( »f{vel4i-3) 71-1) ffueti-230vt=" )} =(2n+1),7.f (v )... ... {D }

For f (v ), now write log .f (v), and these equations become

(2n + 1 ) * -odeco
-1 )

P

-2i0 / ( - 1)}
= { f (v )} .

{G
f {v.s2i0v (-1)

{ E }

(-1)6+ 1

H
f {v.g220 / ( - 1)

f {v.ε - 2107 (-1)

P

ಕೆಶಿ

- { f (v) }. ....€ ;) : { F }
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11

(Di -T

P {

£ (ti– 2)0V (-1)

F {v.ε-(41–20/(-1)Domowany
22007

= { f (v )} .. { G }

200

ituº
.

In these equations let us write e tan ".0 for f (u), and by the third of the

equations in page 35, we find, putting , for 0,

+ + }

1 + 2v.sin.0 +02 r1 + 2v.sin .20 + v ) 11 + 2v.sin.38 + v?}. &c.ee
(4n + 2) .tan - .0

- 2v.sin.0 + v ? 1-2v.sin.20 +02) ( 1 – 2v.sin.30 + v2)

7 + 봉
4n* . tan " .0+

1 + 2v.sin.8 + v 11 + 2 v.sin .20 + v ?? 51 + 2v.sin.30 + 02
&c . = E

11 - 2v.sın.6 + 02) ( 1 – 2v.sin . 20 +0?) IT - 2v.sin.30 + 02)

Í

11 + 2v.sin.0 +01 51 + 2v.sin .30 + v ? (2n + 1 ) * . tan " .0

11 – 2v.sin.0 + v2) - 2v.sin.30 + 02

i
l
a

200

1 +y

.

& c . = €

If v = l , these equations become,

Ś

+

o
cot. & c . = €

{tan. (+0 ) } t {an. C + 20)}-{tan. G + seG + 3e) }. & c.= 8
(2n+ 1 ) . Lo

{ tan.( + 0 ) }. {cot.G + 2e) }. {tan.G + 30) }
n . +

{ tan. G + o)}-{-un.( +30)}.&.= ..+ 30)}.&c.......,artış

This last equation, by writing + 0, for 0 , becomes

-(2n + 1)§ } 1/를

( tan. 6 ). ( cot. 30). ( tan. 56 ).(cot. 7 0) . &c. = €

which is the complete expression of equation { 12,1 } . We should
We should have ob

tained this, had we taken the general value (2n + 1). ( - 1) for log. ( -1 )

instead of the particular one ad (-1).

It is easy to see the vast variety of singular theorems which may be derived

from these principles. We shall content ourselves with a very few instances,
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as we have already extended this Memoir beyond what (in the opinion of some)

the importance of the subject may seem to demand .

1

In the equation { A } , suppose a; = ; f (x ) = £ * – 1 , then writing
1.2

a for x and c for v

{& -as ). {á –ax ).{ – ax " ). [&c.adinf .}= {{

1

If in {A } we supposé a; = ; f' (x) = S : (84-1), taken from1.2.... 17

x= 0, the equation (writing as before, a , c , for %, v) becomes

ali

{ .-ar).( -as) {'a-er) dec.adinfi} = {f}* (1-9)561=* :}ir *( ཡ ) W(- )ཆ - ༡
if x = 1 , this equation becomes evidently identical.

1.2.3...ininti:f(x) = f*du".(E<“— 1); [u= log.. ]
Again, suppose a; =

1.2.3 .

and we obtain, as before

11 an
S” du" (1

-ax) . { ( 1 – ax?).{ (1– ar3) . { & c.ad inf.} = {€

the integrals being taken between the limits u = -2 , and u = log. ä .

For n write -n, or , suppose

( 1 + i) "

1.2.37 ...: f (cx") = a.tidadde doo d.xi { € – 1 }

and we obtain an analogous expression for

&( 1 – axº) n-as)- axº). { & c.ad inf.}

등

8( –ar)
.

* A particular case of this, viz . when a=c= l was communicated to me some time ago in a letter

from the Author of the preceding Memoir. I have since, arrived at the equation ( a) and (b) by several

different and independent methods.
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We shall, however, only stop to remark , that the expression for
!

1

1

f( )= 1 * + *** + **+ &e. = idade demond.... med.z {8 -1}

+

1

may be exhibited in a very elegant form , without differentiation, and which may

be extended to any series of the form

1

0 (x) = f(0) +1.5 (1)+ f(2)+ &c.

f(i) = f(0)+ 1.4f (0) + i (i - 1)for, A’f (0) + &c .
1.2

Substituting for i successively 0, 1 , 2 , 3, .... and writing the results in the

former equations, we have

$ ( x) = f(0) . { 1 + 1 + + & c.}

+
+ + & c.}

1 ° f (0 ) 11.2.x?
+ &c. }

or, simply

.X 2..x2 3.23

Af®) {i +

1.2 1.2.3

2.3.2

+ +

1.2 1.2 1.2.3

22

$ (x) = EX

{ f (0) +1 . Af( 0) + 1.7.4 f(0)+ & c.

If x = 1 , this equation puts on the following remarkable form ,

Af (0 )+ F (2) + f (3) Af(0)
f 0 + + &c. = E

+ & c.}1.2

+

{f(0) +44
+

1.2 1.2.3

If f ( i) be a rational integral function, this terminates , and affords a complete

summation of the first member ; thus we find

32

1 +

+

+ &c. = 2 €
1.2

22 32

1 ? +
T

+

+ &c . = 5 €

1.2-
"

33

13 +

+

+ & c. = 15 €, &c. &c. & c.
.1.2
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There exists a curious enough equation of differences between the successive

values of the series

2 3"

1 " + + + &c. = un
1.2

which, since we are engaged on the subject, we will insert

in +1

Un =
+ &c . = S

{... }
S { (i + 1) – 1 }" + 1)

1 " +1 2" +1+

}1 1.2 1.2 .... 1

( i + 1)+( n + 1 ) .n

1.2

S &c.
1 ... i

n+ 1 ( n + 1 ) .n

- $ {4+ 5) *) - " +1.5(4 + 1) {

- {untu 0,-, -&c.}&c .} - {1- "쀼

" + 뿐

2011

(n + 1 ) .n

+

1.2

+

&c.}1.2

or ,
Un = A " +

Itlo
. Since 1

+( n + 1 ) .n

1.2

&c . = ( 1 – 1 ) " + 1 = 0 .

This gives also

Un+1= u.( 1 + "+1) -" +) - (n + 1) .
(n + 1 ) .n

Un- 1 +
1.2

( n + 1 ) .n (n - 1 )

1.2.3

U - 2 - &c.

from which any value may be found from the preceding.

2" 3 "

The sum of the series u, = 1 ” +

+

+ &c. , may be found also
1.2

by considering that the generating function of
Un

1.2 .... n

is "' ; for we have

Et

&"'= 1 + +
E2 + + +

1.2 + &c. = { 1 +{ 1+ + + &c.}+ { { + + + + &c.}

{1 +* + ** + &c.}

+

1.

+

+ &c.

thus un = 1.2.3 .... nx the coefficient of tr in the developement of se ,

dr.ge

or, Un =
dt *

t being supposed
= 0 after the differentiations.



NOTES. 63

-
-

successive

It remains to deliver some instances of the actual summation of series of

tangents. Examples of what we have already given would be uninteresting.

We shall therefore have recourse to the theorems (B), (C) of this note. From

the expression

AV (-1) - €-AV ( -1)
tan . A =

J - 1 V - -AV (-1)

it is easy to deduce the following,

& c.
1 1

tan . AE

✓( -1) + ε - AV (-1) ✓ (-1) + AV (-1)

& c.

Let then f (x) = 71–1)+z=i»f(1 ) = " -/ (-1),1-7(-1), 0801) --(-1),

= 0. v = 1 , and we find, writing 10 for e

s { +ta,...)}= (2 } )={ 1 - v ( -1 )} + 1 (-1)
- & c.

But, by a similar process, we must necessarily have found

stit . -3,1-1)} = (*m71)"{1+ (-1)}- _ ( - 1)

also therefore, subtracting

S

s { tan.10}e V \ " {-(2n + 1)= . /( -1) + 0 /(-1)}

(2n+ 1 ) (.) - )

tan . A

or,

tan . 20

+

2

tan . 30

+ &c. =
31

and exactly in the same manner, from equation (C),

tan . tan . 28 tan . 30 e

&c. = na +

+

+ one1 2 3

which added , give

tan . O tan . 30 tan . 5 A
2 n + 1

+ + + &c. =

2n +
T.

1 3 5
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The operation by which these equations have been derived from (B) and (C),

is of such a nature, as to leave the mind unsatisfied , and hesitating as to its

legitimacy . Such cases are of frequent occurrence in the theory of exponentials ;

and it must be confessed, that the management of them, so as to avoid drawing

conclusions manifestly absurd, is among the most delicate and at the same time

interesting points in the whole theory. We seem as it were treading on the very

verge of Analysis, on the line which determines truth from falsehood , and feel

ourselves placed in the situation of one who fears to pursue to the utmost, the

deductions of his reason , through suspicion of some latent error, or mistrust of

his own powers.

:



ON

EQUATIONS OF DIFFERENCES

AND

THEIR APPLICATION TO THE DETERMINATION OF

FUNCTIONS FROM GIVEN CONDITIONS .

PART. I.

General Theory of Equations of Differences of the first degree,

involving one variable only.

It has long been known to Geometers, that the integration of the

equation

0 = Ux + n + 'Ar • Vx + r - 1 + ? Az.Ux + r - 2 + " Az.Uz + B , ; .... { 1 }

may be reduced to the discovery of n - 1 particular values, which satisfy

the same equation deprived of its last term B,. The methods by which this

result has been obtained , have been exceedingly various both in point of prin

ciple and execution ; and as they have all concurred in leading to the same

equation deprived of its last term , it might seem reasonable to conclude, that this

was the only equation of the form

0 =Ux +x + n + 'az. Ur + r -it .. • (a)

whose particular integrals possessed the property

above mentioned . Were this the case, the operation for the integration of

0 = Uz + n + 'Az.Uq + n -1 t ... , "Ac.Uz ;"A,.Uz ; ....... • { 2 }

perpetually recurring into itself, would preclude all hope of any thing farther

in the theory of these equations, than what is already known. But happily, this

opinion, however apparently well founded, is really erroneous. We shall shew

in the course of the present Memoir, that there exists an infinite number of

equations of the form (a), essentially different from { 2 } , and from each other,

... "dr.Ug;

R
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which have the same property . We must not then, although no particular

integral of { 2 } should offer itself, conclude on that account, that the equation { 1 }

is unintegrable, since in the employment of other subsidiary equations, we may

be more fortunate . It is surprising how this should have escaped the observation

of such profound Geometers as have occupied themselves with the subject before

us ; especially Laplace, who in one of his Memoirs * appears to have considered

it in a point of view, remotely similar to that which we have chosen at present;

and in one or two cases which will be noticed as they occur , has arrived at the

very equations whose consideration, previously to our obtaining a perusal of that

admirable Essay, led us to the theory we have now to deliver.

The first observation we have to offer is , that there exists a marked analogy

between the constitution of the function

Uz + n + 'Az.Uz + n -it...." Az.Uz + Bg , (b)

and that of the polynomial

u" + 'A.u- +

the last term B, making

an exception, as it is not included in the law of the preceding ones.

nA.u,

Let us suppose,

u?) = Ug+ i + 'ax.Uz

u(? U + ?az.u')).

( 1 ) . ,

( 2 ) ...

:

(n - 1 ) .......

(n) ...

... { 3 }

= un - 2)
3+ 1um-1) + * - 'az.uº-2)

um) = um + "azów "-V + B,

Then, by the successive elimination of the characteristics ul ' ) , u(2) , &c.

we obtain the following series of equations,

u? = Ug + 1 + 'az . Uz

uz) = U3 + 2 + U3+ 1+ 47+ 1 • { fax + 'acti} + Uz.?ar .'as

u " = U:+8 +45+2̂ {*as +Pas+ 1 + 'a:+2}+ 45+ 1 { as.Pas + ®as.'as+ 1 + 05+1.'0s+1} + us.az.ase'as

&c. = &c.

:

* Savans Etrangers. 1773.
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um = Ux + n + Ur+ n - 1.{"ax + -lax+1 + n-3x+ 2 + ....--Pax+ 2 + ....'as+ n-1 }

{n -lart * 4.5 + n- 1}

{"=90x+ 1 + ' as + n- 2 }

nar n - ar + 1 +

+ "
0-10x

+ Urtx - 9

Video+ ar + n - 2 . 'artn - 2

+ &c.

:

+ ur . " ar . " - 'ar.... 'ar

+ B.

Let this be compared with the expression (b), and we obtain

( 1 ) . ..... 'A, = as + " -'art1 + %28+ 2 + .....'as + r - 1

(2) ...... 'Ac = "ax :" - "arti + "ax ." - %d1+ 2 + n - lax + 1 ,* - ?as+ 1 + & c .

(3) . .. A. = "az : n - lax . " - 'az + &c.

:

(n )......"A.A = "az . lar ...... 'as

.. { 4 }

N- 1

where the analogy alluded to is sufficiently evident. In the case when 'ax.. & c.

and of course 'As ... & c. are constant, this affords a complete integration of

the equation,

0 = U5th + 'A.Ux + n -it nA.Uz + B.

for the quantities 'a .... & c ., being given by the equations

1A = 'a + % a + a

2A = 'a.a t'a.sa + & c .

:

nA = la.la ...... a*
are evidently the n roots of the equation

0 = 4 " - A.un- + + " A.

Thus the difficulty is reduced to the integration of the equations { 3 } , which

being of the first order, are easily solved , (um being = 0, by the supposition ).
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If B = 0, and we suppose for convenience's sake, the signs of 'a .... & c.

changed, so that they become the n roots of

0 =u" + 'A.U - + + " A

we have the following equations

un-1) C, . "Q

70 = unt! - " a.u(n-1)

= um ??? - » -'a.un -2)

u * -2) = Cz."- 14 * + C ."-1-1.2 (...)"
un- 1)

whence,

u (1) = Urti - 'a.uz

Ur = Co.'a + Cn-1.4-1.2 ( 9)*+ C.-z.& c.

and by performing the integrations, and writing 'C, ° C ...." C , for the several

constant coefficients

Uz = 'C.'a * + ?C.'q " + ......"C."ar

In general ; -the difficulty of integrating { 1 , is reduced to the discovery of

lar, far.... & c . or of 'ax , and such functions of the rest as will suffice for

determining u ), or any other similar combinations. Now it is evident, that

since there are n unknown functions 'ax .... & c. , and also n equations { 4 } , the

elimination of all but one of them , gives an equation for determining that one.

But here we have an important remark to make, -that as B, does not enter into

these equations, none of the ax can be functions of Br . Of course theOf course the operations

necessary for determining them, must be the same, whatever value we assign to

Bx , and consequently the same as if B, = 0. Thus we arrive at once at this

theorem , that “ the equation

0 = Uz+ n + 'A , Ux +n - 1 + .... "Ar.Uz + B ,

“ is integrable in the same cases as the equation

0 = Uz+n + 'As.Ux +x -it ...." Ar.u ,”

The integral of the former depends therefore on that of the latter, and may be

· derived from it. It will be interesting then to obtain a general formula for this

purpose, which being once deduced, we need have no farther regard to the term

B ,, but direct all our attention to the integration of { 2 } . Now this may
be
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accomplished as follows.

equations { 3 } )

It is easily seen , that (by the integration of the

+

P { – ?ar_1}

Un = 'C.P { - 'as_j} + °C.P { - 'ar - 1 } ...
P { - 'ar]

- P { - "ar- 1 }
+ "C.P { -las- 1 } 2. P { -lar} Σ Σ

P {- ar

P { -karP { - 'ar_1}
-B

-1} g .Σ .+ P { - 'as- ,} 2 .
P { - ' as ] P { . P { – "as }

* ; ... ... { 5 }. n- 1

n- 1
ar

that is , of the form

Ug = 'C . ( ^ur + °C . ()ur + nC .(»)Uz + Ex ; . { 5,1 }

Let us now suppose Bx = 0, and consequently Ex = 0 , then we have

Ug = 'C.Duz + ° C . ( )ur + .... "C.(nu ,n) ; { 5,2 }
..

(1)uz.... &c. being functions of 'as .... & c. are independent on Bs , and

consequently are the same in this expression and in 5,1 }. Moreover, the

integral of { 2 } being obtained , kas .... & c . are determined, and thus the term

P { -Pas - 1}

Er = P { - 'as- 1 } ...
P { - 'ar ......

Σ

-B

P { – "ar }
3 { 6 }

is determined also. All then that remains to be done in order to deduce the

integral of { 1 } from that of { 2 } , is to find 'axı... & c. in terms of ( Vux .... &c. ,

which are the several particular integrals of this latter, and which we here

suppose (by any means) known. The values of 'ag . ... & c. so found , being

substituted in { 6 } will give the term E .,, which must be added to the complete

integral of { 2 } , to give that of { 1 } . Now this is an operation of no difficulty,

and may be performed by merely comparing the two expressions for ur in the

equations { 5 } and { 5,1 } . Thus we obtain ,

*

P {Pr} is used to denote Pe•Po-1.6 . - 8.... Pre ke being constant. If x be supposed positive,

and k= 1 , we have P { $ r} = 0.0.... 0 .. Laplace has used v { Pr } in the same sense. The

full point after the sign E , as usual, extends the integration denoted over all the rest of the term .

S
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( 1 ) ...... ( ) uz = P { - 'as_1}

P { – ar- 1 }
(2) ...... ()u: P { - 'ax - 1} .

P { - 'as
{ 7 }

P { -as- 1} s
(n) ...... (nur = P { – 'ar- 1} E.

P{ - 'ar }

Σ
P { – " ar- 1}

P { -Tax}

from which we derive the following values of 'az .... & c .

( 1 ) ......- 'as

(
Dust !

Dus

=

(2)
13+

Δ

—?а =( 2)......- as

(
1us+2

Dust !

Qur.

Pus

+1

A { iDux

Δ

{a

(3)U1 +

(
Duet

(2)Ur + 1

... { 8 }

Δ Δ

( 3 )......
Par

( 1) 0 $ + 3

( 1) Ux+

(2) Ur+2

(1)Ur + 2

u
s +

( 1)Urt !

) (Dur + 1

us

(bur

(Pus

(uslo {

and so on to "az .

These values of 'as .... & c . being substituted in { 6 } , give E , in terms of

( g .... & c. The operations being performed , we are conducted to the following

theorem ; that “ if

Ug = ' C . ( )us + °C . ()ur + .... "C.(mug

“ be the complete integral of the equation

0 = Us + n + 'As.Usta -1 + "Ar.uz

“ then will that of

0 = Uz + n + 'Ar. Ux + r - 1 + ...."Ar.uz + B ,

“ be expressed by
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Ur = 'C . ()ux + ° C . ( )ur +
C. (nu

(4)uc)

( Tu )

(3)
UI

Δ

ΔA

Pur
1

{ ( 1)ur(2)U.

(1) u ,

)

+ (1)uz. 2. A Σ . Δ Σ . Δ
Σ ....

Du

(2)ur

(1)ur

(3 )Ux

Δ

(Wu

Δ
. { 9 } "

_ BC
Σ

Ug + n - 2
Δ

(2)Ux

Our
| ( 1 )Ux+ n A

2

+n-1}.A A &c.

(1)
18+

( ) u

(1)Us

A

+ 1-2

The same value of the term E , may also be derived by the following method,

more complicated indeed, but well adapted to give a clear idea of the nature of

these equations, and an insight into the artifices proper to be used in their

discussion ; for which reason we shall not hesitate to insert it, although leading

to no result but what we have already deduced in a much more direct and com

pendious manner.

Instead of making B, enter into the nth of the equations { 3 } , let us introduce

a term - B9) into the first, so as to have

= Ur + 1 + 'az.uz - BODY( 1 ) ......

( 2) um = um + faz um

{ 10 }

(n) ... 0= = u - 1) + " azoum-1)

If we denote by ' A ', ? A "}, n - A ”, the values of 'A,, .... " - 'As ,

which result from the supposition 'ar = 0 ;0 ;-by 'A(2) " A ), the

respective values of ' A ' , . n - A ), which result from supposing ' az = 0 ; and

so on, we shall obtain, by elimination and substitution in the equation { 10 } ,

a series of equations as follows:
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ni

-A ".B " }( 1 ) .... 0 = Us+n + 'Ag.Ws+n =1 + ...."As.Ur- { Batm-1 + ' A ".Batang t ...

(2 ).... 0 =un-2 + 'AMUN, t .... - A ). a)
n

ナルール

... { 11 }

(n − 1)..0 = umh + 'A ( -9).ceny + ? A *-2). *=2)

( n ).... 0 = un??! + 'AM–1).un 1)

The comparison of the first of these with equation { 1 } , gives

0 = Bonn-z + A.Bonne+ ...."-n -AB + Br ; .... { 12 }

Now thewhich is the same as { 11 } (2) with the term B, annexed to it .

equation { 10 } ( 1 ) gives

Un= 'C.P { - 'as- 1 } + P { – 'as -1}.&par + P { -las-1} . &
P { - 'ar

u (1) BO
{ 13 }.

The two first terms of this, are evidently the complete integral of { 2 } , to

which { 1 } reduces itself when B, = 0 ; consequently, the last term must vanish

when B, = 0. Let us now examine this term more closely.

Bu is given by the equation { 12 } . The complete integral of this, by what

we have just shewn, will be of the form

BU = 'CM . ( )u !!! + ....n - C (1), (n = 1) ") + E !;

and in order that this should vanish

when B , = 0, since the (1)u.'.... & c. are particular integrals of { 11 } (2 ) into

which B , does not enter, and of course cannot be functions of Bx ; we must

have ' C ( ) = 0 , &c. thus, by { 13 } we must have

Bring
P { -az - 1} .

P {-ag

Bea) being given by the equation

0 = Bitman-e + 'A.Bins + .... " - A.B + B.

In the same way , we find

B! *= P { - 305-1} { . P {-ag}
B ()
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and so on, till we arrive at

B (x -1)

86-49= P { – - 10g- 1} { P {---'ag }

where Bem - 1) is given by the equation

o = BIB' + 'Am-1). Bem - 1) + B ,

which , since ' A - 1 = " az , gives

- BR

B {2-1) = P { - " ax - 1 } }Ρ { -1} Σ P { - " }

Uniting all these results, we find for the value of E ,

– P { - " Qg - u}
Σ Σ . Σ .

Er = P { - 'ag- 1} £ .
P { - 'ag ] P { - "as

P { -Pag--} & ...... - B.

P {

no constants being added in the integrations; which is the same result that we

have arrived at before .

If we include the arbitrary constants under the integral signs, we shall

obtain a very simple expression for Ux, since then , the expression { 5 } reduces

itself to this very form . Thus we have

1. = P{='s-12.74 m .......PREP
- B.

{ - " a ;}
{ 14 }

an arbitrary constant being added at every integration. In like manner, by

considering the constants as included under the integral signs, we may omit

the terms

* C . (0) 6x + C .( )uz to..."C.(muz

in the equation { 9 } .

As an instance for the application of the foregoing theory, let us take the

equation

0 = Uz + n + 'A.Uz+ n - 1 + ......"A.U , + B

which is one of the most frequent occurrence .

For this purpose, let 'a, ' a , ....*a , be the n roots of the equation

0 = U " + 'A.un - + .. " A

T
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and we know, that 'ag -

- a, Pag = - ?a, &c . Thus

" ar - 1 - ВPar - 1

Uz = 'ar - 1.2 .
ta

Σ .... Σ

na²

that is, after all reductions

uz = 'C.'a? + ?C. ?ar + . "C. " a "

B

(1 – 'a ) ( 1 – ’ a ) . ( 1 – " a )

or, since (by the theory of equations)

(4 – 'a )( −a)....( 4 – * a ) = 4” + ' A.-' + ...." A ,

and consequently,

(1 -'a ) (1 – a ).... (1 – "a) = 1 + 'A + ²A + ...." A ;

B

u , = ' C.'ar + °C . ?ar + .... "C. " ar { 15 }
ļ + '& + 2A + ..

"A

Being now freed from the necessity of considering the term B ,, we shall

confine ourselves exclusively to the integration of

0 = Uz + n + ' A , .Ux + n - 1 + ...." Ar.Uzi...... { 2 }

In this case we have simply

.

U9) U !!!* + 1

(1) ........U = Ug + 1 + laz .Uz

(2) .. + Pag.us

(3) ..... u = uuf + 3az.us

:

(n) ..... 0 = um) = ut + "ax.u*-1)

{ 16 }

Let us first find the equation which determines 'ari' and to avoid the com

plicated calculations into which any attempt at the elimination of the rest

immediately from { 4 } would lead us, let us employ, instead of these quantities,

their symmetrical functions ' A ", &c. , and eliminate these, by means of the

equations

UP) = UX + 1 + 'ag .Ug ; { 16 } ( 1 )

0 = (1)
+ 'A".01) 1 - AM). 4 ) ; .. { 11 } ( 2 )* + - 1 '3 + -ig +
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These give the following equation

J'artn - 2.AM Ç'as+ 1.* -? A (1)

( + AD 1 - A (2)
+ uz.'a ,.-'AI

s'ar+ n- 1
0= U3 + n+ u8 + 1-11 + 'A + U +1-2

+ .....U8 + 1 + *-1A .

whence, by coinparison with { 2 } , we find

( 1 ) ........ 'A,

( 2 ) ..... ? A .

A + 'az + r - 1

2A + 'Qz+n -2. A

• { 17 }

n - Ar = n - ' A ' + 'ant1:* - A )

+

(n - 1 ) ....

(n) . .... " As = .. 'ax.n - 1-'AC)

from which , by elimination,

' A , 2A,

( 1 ) .... 0 = 1 +
nA

+

artn - 1• •

1 1

ar + n - 1 az + n-1.ax + n - 2 ' a

? A

(2)... , 'A :1)
8A

aztn - 2.'Qz + n - s

" A ,-

+ F
1

' ar + n -2 *Ax+ 1-2 •
lag

3 ... { 18 }

1-TA

( n - 1 ) .. "—A
"A,

' ax +1.'a,ar + 1

" A

(n) .... n- 'AO

1
2
0
4

The first of these determines the function 'an, and the remaining (n - 1 )

express the values of 'A!" .... &e. in terms of this. Now , let us suppose the

value of u , in the equation { 16 } ( 1 ), which corresponds to un) = 0, to be v . , or,

0 = Vx + 1 + 'a .v,, and 'a, = -
Vr + 1

V.

Let this value be substituted for 'a, in { 18 } ( 1 ) , and we find

0 = Vx + n + ' A , Vi+ n -it...." A , .v.

which is the same as the original equation, as it ought evidently to be, from the

consideration that v , = P { - ' as - 1 }, and consequently is no other than what we
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have denoted by (ºu . It ought, of course, to satisfy the equation { 2 } . Thus it is

equally difficult, to obtain a general expression for 'ay with u . But, let us

suppose that a particular value can be found , and we shall have the corresponding

particular values of 'AP .. &c. by { 18 } , and of course the complete equation

0 =un-, + ' A " .0947-2 + ......»-AL.U.

If then we can obtain a particular integral of { 2 } , we reduce its integration

to that of an equation of the first degree and n - 1" order. In general, if we can

obtain m particular integrals (ºu , ºu ,, ....(mu, of { 2 } , we may, by mere elimi

nation , reduce it to the n - mth order, as follows.

It is easy to see , that the value of 'a, will take the form

("% + 1 + 'C.( )uz+ 1+ ' C . (2)urut....m - ' C . (murti

Mu, + 'C.Pu, + ...." - ' C . (mu,

NI

For ' C ,....m - ' C , write successively the same constants multiplied by 1 , by

2 ,....by m ; and we obtain m values of ' a, essentially different; and of course,

m sets of values for ' A "},.... - AG . We have therefore m different equations

of the form { 11 } (2), by whose help, eliminating

W-2 , ..
ull) U (1)* + n - 1 *+n-m + 1

more ;

we obtain an equation of the

(n – m ) order for determining un) . Its coefficients are functions of (m- 1 )

arbitrary constants ; its integration introduces n-m
while that of

{ 16 } ( 1 ) which determines u , from u introduces another. The value of u , so

found, contains therefore (m - 1) + (n - m ) + 1 = n arbitrary constants, and is

consequently complete. If m = n- 1 , the equation of the (n – m ) or first order,

is generally integrable ; and thus we arrive at the well known theorem , “ that if

we can by any means obtain n - 1 particular integrals of { 2 } , we are enabled

completely to integrate that equation, and of course the equation { 1 } .” If we

admit the process delivered in the Mecanique Celeste ( Liv. X. p. 254.) to be

a complete integration of the general equation of the second order

0 = U: +2 + ' A . Uz + 1 + ? A.. u ,

(as we shall shew hereafter, with a slight modification , it undoubtedly is) , we may

extend this theorem to n- 2 particular integrals.
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The equations { 18 } are, (with the proper attention to the different notations,

and different methods of treating the subject,) the same which Laplace has ·

deduced in the Memoir above cited (Probl. II . p. 42, 43.) He seems, however,

to have overlooked the simple substitution which identifies the equation { 18 } ( 1 )

with { 2 } . At all events he has passed it unnoticed, and his demonstration of

the theorem we have just enunciated , involves a train of reasoning proportionably

longer and more intricate.

Let us next eliminate all but "a from the equations

0 = un!!! + "ar.um."+1

N- I

2 "-1)1) -A.Uz;= U, + 2-1 + 'AW.4 , + n - 2 +

* A " . ... &c. here denoting the values of ' A ..... & c. respectively, which result
from supposing, not 'a ', but " a, = 0.

By a process exactly similar to that by which the equations ( 18 } were

derived, we find

2A, +1' A

( 1 ) ...... 0 = 1-2 +

" A
x + N- 1

I
t n

"" a , " a , . " a,+ 1 " ac "az + 1-1

SA +12A

" ) =

nA

( 2) .

r +n2

... A
7 ....

It

ma
nac · "ar "ac . " ax + r 2+1

{ 19 }

n

* -' A ,
(n - 1) ..." - A )

Art !

na," as " a ..

+

n

(n ) ...." - 'ANY plas

the first of which, by writing

201
7

(1)
for " ar, becomes

VY
3 + 1

n SA , pr-2A 1
r+ n r + n - 3

0 =vim + v.1n-1+
(1) +
* +1-2 }V ! ;. ... { 20 }

" A " A "A
* + n x + 1-1 r + n - 1

The same theory may be applied to m particular integrals of this equation,

as to those of { 2 } , but we must here observe that from { 20 } we may deduce

an infinite number of other equations which have the same property ; for let us

suppose anda .... &c. to be the same functions of the particular integrals

U
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(1), (m) , of this equation, that 'a . ... & c . are of me. ... & c. { 8 } ; and by

supposing

1 2,1
2
)

<

படி = ;

P {-4 }

n (1)

or , " a = (2)

v

* + 1

and making the following substitutions,

*-*A ,+1=2;

12

* A ), 2A ,, =

A

* ΑA

Ttn - 3

TA ,

; ..

n -- A , +* -:- 1

" A , +r
: A , ,

TR1 z + n - 1

71

-SA1,7 + 11–2 , " - A1,4+n -3
2A,,, =

" A1,4+ = 1

--A1,4 + n - 5-1
A2,5 ..- A2,5 =

" A , " A
1,2 + 1-1

1,8 +1-1

we find a second subsidiary equation

0 = v tem + 'A2, •vn- ...." Az,...

and , in general,

0 = veton + 'Ay, co v*+7-1 + " Ay,so vieles { 21 }

*Ay , being determined by the following equation of partial differences between

x , y , and x,

* Ay + 1,3 =
**Ay.5+ =: ( 22 )

"

n

j .

Ayy , z + 1-1

The equation { 21 } has the property so often mentioned , that if m particular

integrals can be discovered, we may reduce the equation { 2 } to the (n—mth) order.

It is to be observed, that this equation , whatever value (excepting zero) we assign

to y, does not recur into { 2 } , as indeed will be rendered evident by the inte

gration of { 22 } , an operation which may be thus performed :

By writing n - x for %, y - 1 for y, and x+n - %- 1 for x , we find

n

Ay,a+ r ---1
* Ay– 1,4+ n - 2

1"Ay-1,3+ 2 (n- 1) -

which, multiplied into { 22 } , gives, (writing again y - 1 for y)

-Ayo

y - 2,5 + n - 2- + -

"Ay- 1,8+ * -1." Ay - 2, - + 2 (n- 1 )-9

. (c)
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-1

Now by making zrn in 22 ) , we find

" Ay,u = {"Ay-1,x+ n-1 }–

whence it is easy to see that

" A ,,. = ('C + – 19y)(-2)

'C being an arbitrary, functional characteristic.

This being written for " Ay , in (c) , gives

-A ,, : = A , – , + n -2 : { "C +y(n=1) } - 1,5
–9,5 + n – 2 • {"C.+yem -1)=3}

from which we obtain (by a process analogous to that by which we integrate

an equation of common differences of the second order in y , consisting only of

two terms)

* C , +(0–1)(n - 1)-1
-A ,-2, + n - 2 = - A , -1,1 + 2-4, 3 + 2 (1—2) •

City

( -1)

+ (y - 1) (n - 1) - (3 + 1 )

&c. = &c.

&c.

and consequently,

•Ame= { C_,+ ( - 1 .C }-{ C,+36-1)= C +0=1/(n-1)=(0+1).
*C +y(n-1)."C_+( – 13(1-1)= 1.C. ' C +(y- 2)(n - 1)-2

A : C ' C ,+ ( - 1)(n - 1)-(2 + 1).'C + (5—2Xn — 1) –(2 + 2) . &c .

'C. , °C. , . , °C..re being three arbitrary functions to be determined by the

(-1)

;.... { 23 }

conditions

* A .,, = -A,; -A...= -A.
1

RA
+ n - 1

»---A ,+n-:-1.*A1 ,. =; -
" A , + r - 1

Having obtained n- 1 particular integrals of any equation of the form { 2 } ,

the nth may be deduced from them immediately without the tedious process of

elimination above indicated. Suppose, for instance, we had u ,, (2) ,,....(n- " ,,

and wished to find (™)u The (n- 1 ) first of the equations { 8 } give us the values

of 'an , .... "- 'a , and the equation

*Q. = 'A. - {* + n-1 + $ a + n 2 + .... + -19.+1} ......... {4 } (1)

or, in case of greater convenience,

" A ,
nag • { 4 } (n)RI

ac
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determines "ay from these. Having then the values of ' 2. , .... "ac , the

equation { 7 } (n) gives us at once the value of nu, . If we would include the

result of this in a general expression, which should at once exhibit

the complete integral of { 1 } , in terms of the n - 1 particular integrals

( n- 1 )u, of { 2 } , it will suffice to substitute in { 9 } for (M)u ,, its value so

found. But by this means, the elegant symmetry of that expression will be

destroyed, without gaining any advantage in compensation .

(Du ,..

The equations { 4 } have shewn us what functions the coefficients ' A ..... & c.

are of the subsidiary quantities 'a ....& c., and the equations { 8 } have enabled

us to express these in terms of the particular integrals. We may thus accomplish

another, and highly interesting point, without which the theory of equations of

differences must be considered as incomplete, and that is to determine the

constitution of the coefficients of any equation of the first degree, regarded as

functions of the particular integrals. It is true , that the same end may be

obtained in a manner apparently more direct by eliminating 'C ,...." C , from

the n + 1 equations
1

Uz = 'C . ( ) ur + ° C . ( )uz + ...."C.(Wur

Ux + 1 = 'C.Uz+1 + ° (2)
urtit.... " C . (1)U8+1

{ 24

Ux + n = )ux+ C .( )ux' C .(" uctn + °C.Pux+n + .... "C.(W203+ n

and after making the proper reductions comparing the resulting equation with

{ 2 } . But this method ( even in particular cases) is extremely tedious, and far

from conducting to a general formula ; for which reason , as well as to preserve

uniformity of analysis, we shall prefer that before indicated . By this means we

arrive at the following equations, { 25 }

(
312

+ n

(Du
+72

Δ

Δ

(2)Ur + n

Dust

+ n - 2

(1)
Urt!

4

(1)
ur

+ 1-12 +2

'Ar = ( − 1)':{ires tan
1+ ( 1+Pales

Duit

{ 1 + & c . ;.... (1)
x + n - 2

+1-2
+93

+1-2
Dux

Δ
+ n - 3

A
p >Ur+ n -3

Dur+ n -3
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compose ‘Az .... &c. will be much more clearly seen by actually evolving one or

two particular cases, than by any general investigation . Let us take as instances,

the values of 'A,, PA, in the equation

0 = Ux+ 2 + ' Az.Ur +1 + 2Ax.Uz

The formulæ { 25 } give

(1)Ur +

(2)
Ur+ 1

(1)Ur + 1

(2)

( 2)2(2 )/ 2 + 2

(1)UI
Durta

. P + 1
(
1U5 + 1

Nur + 1

(
Dur + 2

( 1 )ur . ()ux ( 2 )ur •r + 2 + 2

'A , = ( - 1) .'
Must! (1+ ( 1)

Uro(2) 265 + 1

(14+2

(1)Ux +1((2)
olar

;

.
(
Puc

(
122(1)ux

(2) Ulr1 + 1 1

A

(1)Ur + 2

( 2)
Urt(2) 41 7 + 2

(12 + 1(1)ur + 2( 1 + 2

(
24r + 1

( 1)
Wax( 1)Ur + 1

2A, = ( - 1) .(Dusti
(
urti ( 1) 16r + 1

X
Dus

( 1)Ur + 1

= + Tue
(2)4x + 1

(2)Ug+ 2 (2)u.rtl .. (1)Ur+2

(Dux + 1(2)uz(
203

.

(2) 162
;

is (Duz .

A { Du .

and thus the equation becomes

( 2)u . (2)U ...(1)U .
(2)26. (2)u ,+1

.

.r + 2 r+ 2 r + 1 : r+ 2

0 = Ux + 2 - Ur + 1 : (1u ... ux

+ 1

r ++2.( )u
tur

Sun

( ur .((2)u ..(1)ux2 (

: (2)ur. " uz +
} ; .. { 26 }

'.t +1

We have endeavoured in the preceding pages to include under general

formulæ , some of the principal results which have hitherto been obtained in the

theory of equations of finite differences of the first degree, as well as to add

something to the stock of information already accumulated . The principle em

ployed, has been attended with one considerable advantage ; that of leading us at

once to an intimate knowledge of the constitution of the coefficients of these

equations, and of exhibiting at the first glance, the connection between the

equations { 1 } and { 2 } , so often mentioned . The application of the same principle

to the equation of common differentials of the first degree

dn- sudhu

O = + 'A ,
dxi

t ...." A , .u + B ,.........(d )
dxi- 1

is equally simple, and

leads by short and easy steps to the general theory of this equation. Our limits,

however, will not allow us at present to enter upon this subject.

The similarity between the two equations { 1 } and (d ), and between the

methods of treating them , was first remarked by Lagrange in a Memoir published
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in the Melanges de Turin, Vol. 1. where he applies d'Alembert's method of

integrating the latter equation ( 'A,, ....&c. being constant) to the corresponding

case of the former, and from which he derives the usual theorems respecting

recurring series . In the 34 Vol. of the same work, ( 1763—5) appeared his

two celebrated theorems concerning the general equation (d ), which were

extended by Laplace in the 4th Vol . to equations of finite differences. Of this

Memoir, (as far as it relates to the same subject ,) that which we have above

referred to * is a copy almost verbatim . Finally, Condorcet, in the Mem. de

l'Acad . des Sciences, has verified these results ; and Cousin pp has shewn how

Lagrange's method of treating the equation ( d ), viz. multiplication by a factor,

may be applied with equal success, although, it must be confessed, not with

equal simplicity, to { 1 } .

* Savans Etrangers. 1773 .

+ Lecons de Calcul Differentiel, et de Calcul Integral, tom . ii. p . 722.

in 1777.

et suiv . published



PART II.

ON THE INTEGRATION OF CERTAIN PARTICULAR

EQUATIONS OF DIFFERENCES .

The equation of the first order and degree

0 = U7 + 1 + A, U , + B,

may, as is well known, be integrated as follows.

For u . , substitute v..P { -A .-1}, and we find

0 = (0 + 1 -0.). P { -A } + B.

that is,
-B

Δυ, =

P { -4 }

and integrating with respect to x

and

{ -A +
C + Σ

-B. ,
;V. = C += C + Σ

P {-A ,} r

*

Let us next consider the equation of the first degree and second order. We

have already observed , that a process is delivered in the Mecanique Celeste,

equivalent to the integration of

0 = Uz+ 2 + a , .U +1+ br.4, ; .. { 27 }..

and we shall take this opportunity to follow

up that process , so as to obtain from it in every case ) a complete integral.

But first, for the sake of simplification, we will transform the equation { 27 } into

one of the same form , but with only one variable coefficient.

b.

assume u , = v..P { -2,-2 ), and we obtain, writing - C,+2 for
a.a- 1

0 = V1 + 2 – V2+ 1 - C4 + 2 • V .; { 28 }

For this purpose,

odon

...

* Mecan. Cel . liv . IV. p. 197. And again, liv . X. P.
254.
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and consequently,

a
l에

+1+
C Cg

Il

V.- 1

= 1 +

1 +

Cx- 1

(=)

(3)
-3

C
= 1 +

1+
C - 1

C - 2
1+

1+

Ci

C :-)Vi– 27

i being constant.

Let us denote by the symbol F (c) , the continued fraction

1+
Cg

C - 1
1+

1 + .... C;

and since we may suppose ( :--) equalto an arbitrary constant,if we suppose

this constant unity, we find F ( C.) for a particular value of (0_ ), and of course

P { F ((, )} for a particular integral of v , in the equation {28 } . Having obtained

this, the complete integral may easily be deduced, and it will afford a good

example of the application of the theory of Part I.

Thus we have

( v. = P { F (c.)} = P { -'-1}

and of course

ace - F (C + 1) ; la =

-

- C2 + 2

F (C,+ 1)
F (€,+2)-1

whence by the application of { 7 } (2)

P { 1 - F ( + ) }
(2)v, = P {F (c) } }

P { F (Cz + 1)}

- Cx + 1

- P {F (c ) } = P
Ic +i + F (c ) )materice !

Y
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Thus we have the complete integral of 28 },

v . = P { F ( c.)} ("C + °C.EP
- C4 + 1

Tcrtit ......F (czc.)})
{ 29 )

which multiplied by P { -ar- 2 } , gives that of { 27 } .

From the foregoing operations, it is easy to derive the complete integral of

0 = U&+ 2 + Qz • U2 + 1 + bx.uz + B, { 30 };

The substitution of v ,.P { -az- 2} for u,, gives

B.

O = V2 + 2 - V. + 1 - Cx + 2 • V2

P { -a , }

+

whence, after all reductions,

- Cx + 1

{ 31 }u , = P {-07-2. F (cz) }£ .P {
lcz+ 1 + F (C )

2. -B.. P {** + F ( .) ?
la.. € +2 . F ( C )

a constant being added at each integration.

This process, in the way we have here delivered it , answers equally for

positive and negative values of x * . It is to be observed, that F (cy) is merely

an abbreviated symbol for a finite algebraic fraction , whose numerator and

denominator consist of a complication of terms, depending on the combinations

of Cz, Cx - 1 , &c. The integration of the equation { 28 } does not then enable us

to sum the continued fraction F ( cz ). It requires this summation to be previously

known by other means ; in the very same manner as the integration of

0 = Urti + ac . U, + B2

instead of enabling us to sum the series

B

P { -az - 1} P { -a;}

B

+

which enters into the final expression under the form ? pre -supposes

* “ Cette equation ne peut donc commencer a avoir lieu que lorsque x = & c ." - " Ces Equations

ne commencent point a exister toutes a la fois.” This is not the place to enter upon the metaphysic

of equations of differences. We will merely observe, that such phrases as these, which tend to

embarrass the reader with imaginary restrictions, are something worse than inappropriate,
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6

that we possess the means of performing the operation denoted by 2. In default

of these means, nothing remains but to write the series at full length, and in

this respect, the signs F and E, are placed under the same circumstances. We

will add one more remark . If by any means we can discover a particular integral

of the equation

0 = Ur+ 2 Qx + 2 · Ux + 1 be + 2 . U

independently on continued fractions, we may then return upon

the difficulty , and assign the value of the continued fraction

be
az +

Qr- 1 +

ban
r - 1

an - 2 + & c.

in some other form .

For instance, the continued fraction .

2

2

1+

1+

1+

2

. . .

in which the number 2 occurs x times, is represented by

2++ + ( -1 )++ 1

20+ ' + (-1)

In a Memoir which I had the honour of communicating to this Society in

the beginning of the present year, I exhibited a method of integrating the

equation

0 = Ux + 1.4 , + a.Uz + 1 + b.u . + c

of the second degree, with constant coefficients. A particular case of this had

been previously integrated by Laplace in the Journal de l'Ecole Polytechnique * ,

viz .

0 = U + 1.UZ a ( U : +1 – u ,) + 1

* Memoire sur divers points d'Analyse.
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Now if in our formulæ * we make

a = 1 , B = y = a ,
8 = 1

we shall have

a - / ( - 1)
w = 0, = a, M = ( -1 ),

a + 1(-1)

1-K.wiki

U , = V ( -1 ) . 1 + K.qx

that is , supposing K = v °, c being an arbitrary constant,

ca c + x

2 2
V

vi-1)
= tan

{

C + x

2/(- 1 ) log )}ctctx

2
+ v

la + (-1)
V

= tan { (c + x). tan G ) }

which coincides exactly with Laplace's result. An equation of the second order,

somewhat similar in form ,

0 = U, + 2.Ux + 1 . Un - a (u: +2 + Uz + 1 + ur) ; . . { 32 }

admits of the following integration.

Assume, U , = (a ) . tan ve

and by throwing {32 } into the form

Uz + 2

a (Urti tur)

a Ux + 1.UZ

we obtain

tan v . + 1 + tan v,

1 - tan Vx + 1 • tan ve

- 1tan (Ys + + 0 ,)
tan (Vx + 2)

or,
0 = V2 + 2 + 0.4 + 1 + ve

* These formulæ and the Memoir referred to , are to be found in another part of the present

Volume.
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and integrating

it

a -B/( - 1 )
Vc = By ( > (<}+ v (-1). V (?)) +a+B/(-1) ( -v1-1V0-))

+

a and ß being two arbitrary constants ; that is ,

vz =a =Bx/(-1) ( CO + ( -1 ) . sin ? ) + a+By/( (cos? - (-1).sin 5)

.2
2πα

= a.COS

3

+ ß.sin

whence, writing this for vi , we find

U. = v (a).tan {a.co + B.sin 27 )
2X

• COS
; . • { 32, 1 }

3

In the same way, the integrals of

0 = Uz +2 . Uz+ 1 • Uz + a (Ux +2 -Uz+ 1 + uz) ; . {33 }

0 = 4x+ 2 •Uz+ 1 • U , + a ( -4x +2 + Uz + 1 + ux) ;.... . { 34 }

0 = Ur + 2 •Uz+ 1 . Uz + a ( + uz+ 2 + Uz + 1 – uz) ; . . . { 35 }

Uz = .....
{33, 1 }

may be shewn to be, respectively

= [ (a).tan {a.cos + B. sin " *};

u, = V (a). tan {a . ( + V (5))*+8 .{a.(++ (6))*+R.( -V0 ) } ....334,1}

Ug = v (a) . tan {a . (-1*» *)) +B.(=^-76)) }s....135,1}

and
upon the same principle, we may integrate many equations of superior orders,

such as

0 = (Uz + gUz+ qUz +1 + Uz + 3Wz+ qU ; + Uz +gUz+qUz + Uz+qU4+ 1 ) - a (Uz+8 + U : + 9 + Uz+ + uz)

0 = (Ux + 3Uz+qWz+ + uz+ gUz+ qU , + Uz+gWz+ 1U , — Uz+ qWz +qUx)– a ( U : +3 — U : +2 -Uz +1-4 ,)

0 = (Uz+ gUz +2Uz+ 1 — Uz+ gUz +qXx + uz+ 3 x +1Ų — Uz+ qUx+ 1Ux) + a (Uz+ 3 — Uz+ a + Ug+1 – U.)

&c. = & c.

N
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We will next proceed to integrate the equation

0 = Uzt, u , + az .Uzti + bx.uz + C7 ;. . . {36 }

in which a , b , c ,, denote, as usual, any functions whatever of x.

+

Let us conceive this to have arisen from the expansion of

0 = (Uz + 1 + Ax+ ) ( u . + A ) + B. (u + A.) + C

which gives, when reduced , and compared with {36 }

A, = a ; B, = b -Qz+1 ; C, = c ; - a , b,

V , + 1
Assume now , U =

- a ,, and we find
,

U
x

0 = Vz + 2 + (bz – Qz+ 1) Vx + 2 + (0, -a, b ) .v ,

+

We have already integrated this. Let (1)v , and (2v, represent its two particular

integrals, and we shall have

(1)0,7 +1 + C . (? v= + 1

Mv + C . ) ,

Ux at

C being an arbitrary constan In the following cases, the integral may be

exhibited without continued fractions,

0 = 4x + 1 Uz + ( az Ux + 1 + axtı uz) + Cz

or, more generally

0 = Uz +qU , + Q •Uz+1 + (Qx+ 1 + 6.0x+ 1) u : + (az+ 2 • ą: + 6.04+1-24 + 0.00x+1)

d . being any function whatever of x.

The consideration of the different orders of any proposed function , leads, as

we have shewn in a previous Memoir, to equations of differences of the first order.

We shall here present a few examples of that theory which lead to integrable

equations of some little generality, such as in the very imperfect state of our

knowledge, respecting equations of a degree superior to the first, cannot but

be interesting

Let us first seek an expression for f* (v) when f(v) is of the form

v2 + 2 av

4V - a
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Assuming f * (v) = U ,,, we find the following equation

0 = u ?, - 4u ,.Uz + 1 + a . (2u, + U :+1) ; .. { 37 )•

This equation may be integrated , by putting

а 2w, - 1

t , -

2 w , +1

when (by the mutual destruction of certain terms) it becomes

0 = Wr + 1 + 2 w ?, -1 ; . ........ .

and integrating,

Wc 2 i-1ice - r's

c being an arbitrary constant.

From this, by making u, = v, we obtain the value of c,

e = {1-6.33) } + 66-3) / (- 1)

whence it is easy to see, that *

I

1

u , = f* ( v )

S
i
m

2.sin {2". C. ") } -

sin {2 " . sin -- Cat }
21

+1

20-2
3
)

Nearly in the same manner, we obtain an expression for f * (v) , when f(v) is

of the form

4 av - 02

2v +a

This leads to the equation

a (40, – Uz+ ) ; . ......... {38}0 = u ?, +2 u , uz+ - a (4u, – Ux + 1) ; .

* It may be proper to remind the reader, that we continue to use sin --, tan-, &c. for what

were formerly written arc (sin = ... ) , arc ( tan = ...) &c. The principles of this notation we have

explained elsewhere.
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which is reduced to (e) , by putting

W , +1

Ug = 2a .

2w , -1

Thus at length , we find

+1

sin (25. sin - (20+ )}
u , = f* (v) = 2a .

2.sin { 24. sin -- (30+ ) } -1

3

For another instance, let us suppose

f (u) = a + {b – 2ac.v +0.0? } !

as before, let f * ( v) = U ,, and we get

0 = u * + 1-2a.U5 +1 -0.2 , + 2ac.u. + (a - b)

Now , any equation of the form

0 = uºr +1 + A..u ?,+ B..Ue+ 1 + A, B. - 1•U. + C ;........ {39}

1

may be immediately integrated, by assuming
1

1

0 = W4 + 1 + A , .W . + C.

0 = u, + B ,-1.0 , w .

By eliminating w , we arrive at the proposed equation, and consequently,

its integral will be

B- 1

+ { C = ) + P &-A.-it.(Const.+27-003)}}
1

V
s

.....
.. { 39, 1 }

2

1

!

In the case before us, we find

b - a ?

U = a + {a + PI + C.er}1-0

C being a function of v, which being determined by making up = v , gives

b -a

C = v * - 2 av

1 - C
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and consequently,

b - ca

+f* (v) = a + { + c

(v2-2av – h = )

Let a = 0, and the general expressions will become

f (v) = {6 +0023 f* (v) = { ( - ).6+e".0034

Again , let b = 0 , c = 1 , and we easily find

f (v) = a + V( vº -- 2av )

f*( u) = a + ( v2 - 2av .) = a + v {ve –v – 2av .— (x - 1 ) .a? )

In this last expression, if we make v = a = 1 , and for x put – X ,

f (v) = 1+ (v? — 2v) , f- ( 1 ) = 1 + (x).

We shall terminate this part of our subject with the following theorem :

“ That an equation of differences, of whatsoever order and degree, ( n and m,)

with constant coefficients, and homogeneous in Uz , Uz + 1 , &c . is either completely

integrable, or admits of one or more particular integrals, which may be found,

their number not exceeding n.m.” It is sufficient to substitute in it Car for

Uy , and we obtain an algebraic equation for determining a, whose degree will
not exceed n.m. To fix our ideas, let us take the equation

.....{40)
0 = u’r** + 2 + aux+ 2 •Ux+ 1 + buc + 2 •Ur + cu*x + 1 + duz + 1.Uz + eu?, ; .

The substitution of Cat, or q * + C for X, gives

o = a * + a.a? + (6 + c) .c? + d.a + e ; ..... (f )

Let 'a, 'ag... be the roots of this equation, then will four particular integrals

of { 40 } be

Uz = 'C.at, u , = ?C. ?Q ?, Uz = ' C.8a ", Ug = "C.az

and it is curious to observe, that the coefficients of Ux + 2 Uz, and uⓇg + l, are

similarly involved in 'a , ' a , 3a , "a . Let us now conceive the equation ( 40 } so

constituted, that

0 = (U:+2+ A U3+ 1+ Bun) ( U : +2+ C # x+1 + Du,)

2 A
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which being evolved and compared with { 40 ) , gives

A + C = a B

AC= cs
BD= é ), and BCHADE d>

The four first of these determine A, B, C, D, and there remains an equation

of condition

0 = d ? + cb2 + e a ’ - 4 ce - abd .

If this be fulfilled, the resolution indicated

is practicable, and { 40 } admits of two distinct complete integrals,

u , = 'C.'a " + °C.'a'

uz = °C.89 " + C.4a "

The equation of the first order and met degree

0 = une + 'A..u , + ....MA.u "

is always decomposable into factors of the first order and degree, and of course

admits of m distinct complete integrals

C.a?, ?C.% a " , &c.

There is one exception to our theorem , viz . when the sum of the products

of the indices below each letter with the exponents above, respectively cor

responding, in each several term, is the same throughout the equation . For

instance , in the case of

0 = U_U3 + 2 – a.uz+1, where 1. (x + 2 ) + 1.x = 2.(x + 1 )

the preceding method cannot be applied, the reason of which is plain .

There is again an exception to this exception, and that is, when the sum of

all the coefficients of the equation = 0 ;= 0 ; as in

o = u +1 — 2 + 2.0 +1.4x + Ux + 4 • u

0 = x +2.Um-* + A.Ux+ 2 •0771. umar +1 + B.ute.wmi. um - n +2 + C. &c. ; . { 41 }.

where () = 1 + A + B + C + &c.
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In such cases, the same substitution succeeds, but with this difference in

the results, that while in the former the resulting equation determined the values

of a ; in these it is arbitrary, the whole vanishing by reason of the equation

of condition ,

In { 41 } , uz = + C , a and C being two arbitrary constants. This expression

is consequently one of the complete integrals of { 41 } . To obtain the rest, we

must consider that the elimination of a and C gives

0 = ut Ux +2 • Uz

This must therefore hold good at the same time with { 41 } , and must con

sequently be a divisor of that equation. The quotient, made equal to nothing,

will give the other integrals.



PART III.

ΟΝ FUNCTIONAL EQUATIONS .

The
he integration of equations of partial differences, having introduced ar

bitrary functions of the independent variables, before such general integrals could

be applied to any particular case, it was necessary to determine these functions,

so as to satisfy, not only the general equation, but also the particular conditions

of the problem , not expressed by that equation. Hence, arose a calculus, whose

object might be stated to be , “ the determination of functions from given con

ditions.” Monge, in a Memoir published in the 5th Vol . of the Melanges de

Turin ( 1770-1773), seems to have been the first who has treated this calculus

by any thing like a regular process. He there resolves the equation

0 = $ { F (x) } + A (x )

(F ( x ) and A ( m) being known functions of x, and ø being the characteristic of

a function, whose form is required ) and gives several instances of elimination,

between two or more functional equations, which conduct to a final equation

of this form . Lagrange, indeed, had previously * resolved the functional equation

a . ¢ {t + a (h + kt)} + $ . $ {t + b (h + kt) } + & c. = T

( T being any function of t, and a, b ,.... & c. being constant ; ) - or, at least

reduced it to the resolution of an exponential equation

0 = a . ( 1 + ka)* + B ( 1 + kb)+ + &c.

but his process, ( founded

on the expansion of o { t + a (h + kt) } , &c. by Taylor's theorem , and the sub

* In the third Vol , of the Melanges de Turin ( 1762-1765) in a Memoir entitled “ Solutions de

differens problemes de Calcul Integral .
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sequent integration of the resulting differential equation , of an infinite order )

is to be considered merely, as one of those casual and insulated applications of

principles foreign to the subject, with which analysis abounds in every part.

It was soon perceived, however, that all the cases of this calculus which could

occur in the problems which gave rise to it, might be reduced to the integration

of equations of finite differences, in which the difference of the independent

variable, instead of being, as usual, unity , was some known function of the

variable itself. This circumstance was first pointed out by Monge, who, fol

lowing up his former ideas, published two Memoirs on the same subject, among

those of the Savans Etrangers for 1773 , in the latter of which, he solves several

of the more simple cases, where the difference of the variable in the resulting

equation is proportional to the variable itself, by ingenious, but peculiar

artifices. But this was merely shifting the difficulty to another point . Such

equations of differences had not been considered , and it became necessary to seek

a general method of transforming them into equations of the common form , or of

integrating them without such transformation . Precisely at this period , Laplace

(not improbably at some suggestion of Monge) undertook this subject ; and, if

we may judge from an expression used by the latter * , considered the difficulty

as completely overcome. Since that time, I am not acquainted with any thing

of consequence that has been added to the discoveries of the above Authors.

Nevertheless, Laplace's method, as he has delivered it , extends simply to the

case he has considered, and no farther, viz . when the proposed functional equation

involves two terms, 0 {(\ F (x) } , and ¢ { ? F (x) } , and two only.

.

I propose, in the following pages, to exhibit a method by which we may

overcome the difficulty, not only for any number whatever of terms of the form

$ { \ F (x ) }, 0 {(2F (x ) } ,. $ {(1 +1F (x)} ,

in which case, the functional equation to be resolved, is

0 = F { ,$ {"F (x)}, ¢ { ( ® F (x) } , $ {(u+!)F (x)}} ; ( 42 )

but also, when the function to be found, is considered as relative to any number

whatever of variables, x, y, 2, .... & c.; as for example, when it is required to

determine the form of a function ® {x , y , .... } , which shall satisfy the equation

o = F {x,y,...;$ {(\ F(a),(WF(y), ...}..... ${( +1°F(a),(w+1)f(y)...}} ....{{3}

. . .

*

- “ cet habile Géométre m'a dit qu'il convertissoit toujours une equation aux différences

finies, et variables, en une équation aux différences finies et constantes."

2 B

Beyerische

Staatsbibliothek

München
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F, (" F ,.... ( n + 1) F , (1) f , ....(n +1)f , &c. being the characteristics of given

functions ; a case, if I mistake not , which has never before been considered .

It would be, however, a want of candour to omit acknowledging myself indebted

to the above -mentioned method of Laplace for the first idea of the principle

employed. I shall not scruple then to insert this method, (which is very short,)

not only as an excellent introduction to what follows, but also as it will afford us

subject for some remarks of considerable moment.

O =

To begin , however, with the most simple case, let us take the equation

0 = $ { F (x )} + A , ; ...... { 44 }

resolved by Monge. For x write * F - ' (x) , and we find

♡ (x ) + (AF- ), or, $ (x) = – (AF-').

since F { F - 1 (x) } = x, or, FF- ' = 1 .

Thus the nature of the function is determined ; for F being a given charac

teristic, F- ' is given also by the resolution of the equation

F { F - (x) }

Let us next take the equation

0 = F { x, $ {( F.(x)}, ¢ { (2)F (x) } } ;} ; ... 45 }

which is an extension of Laplace's case. To reduce it to an equation of common

differences, assume

(1 )F (x) = Uz , (- ) F (x) = U. + 1

uses

success .

* Monge has, upon a different occasion , used ' ( ) to denote the interse function of (0) .

Knight, in a paper on the expansion of any functions of Multinomials, (Phil . Trans. 1811. Part I.)

or strokes
put under a quantity to denote the reverse operation of strokes put over it.” It is time,

that such arbitrary notations should be replaced by one founded on some regular principle, which we

have accordingly attempted to do. Analysts will judge whether our attempt has been attended with

This process is in fact a demonstration of the following theorem . “ If P, A, B, represent

any functional characteristics, such, that 0 A ( x ), or " { A (x ) }, = B (r ), or detaching the symbols of

operation from those of quantity, PA = B, then we shall have, o = B A-', or 0x = B ( A ' ( )}"

In like manner, if ® AB = C, we shall have o = CB - ' A- , for AB = (PA) B, and consequently,

considering (° A) as characteristic by the preceding theorem , since (p A) B = C,

• A=CB-` = (CB-') ; and again , ø = (C B-') A - ' = CB - ' A- ' . In general, if p .("A.( A ...(mA = B ,

we have o = B .(MA - 7 (0–1)A - ... " A - 2, a theorem of great use , and which sets in a clear light the

analogy between functional and exponential indices,

one
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% being a certain function of x. The elimination of x from these, gives

0 = Uz+ 1 – (2)F.(1)F - 1 (U ,) ; { 46 }

an equation which determines the characteristic u, in z, or the form of the

function Uz . It is an equation of common finite differences, and we may

observe, with none but constant coefficients) and, the theory of these equations

being supposed perfect, u may be considered as a known characteristic. The

equation ( 45 } becomes then

F {((1F-"u )., (pu). , (o u):+1} ; . ( 47 )0 =

and •

an equation of common differences in 2, the unknown characteristic being (pu) .

Let the value of (pu ): derived from this be w. , and we obtain

pu = w,

Hence this theorem : - " To satisfy the functional equation

0 = F { x, ¢ {(! F (x) }, $ {(®)F (x)}} ;

= wu - 1

First, take u, a characteristic determined in z by the equation of common

differences

0 = U2 + 1 (2) F . ( F - 1 (uz) :
-

0 =

Secondly, take w , a characteristic determined also in %, by the equation

F {(WF - 'u :) , W. , W. + 1 }

Then will the required characteristic ø, be expressed by the following

combination of w, and u,

p == wu -1

Now, on this process we have to remark , that in the integration of { 46 ) and

{ 47 } , there will be introduced two arbitrary functions of cos 27 % ; thus we

shall have

u: = funct. { , C (cos 27%) } ; . ... (f)

C being an arbitrary characteristic.

Now the expression above found for p, requires the determination of u - 1 .

For x then in the equation (f), write u- (x ), and we have

funct. {u- ? ( ) , C (cos 2 + u ^ (-)) } = uu- ' (x) = %
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stance.

So long then as we particularize the characteristic C , the determination of

u -' (x) in , from this equation, depends only on the ordinary analysis, but when

it is taken with the utmost regard to generality, so as to embrace as well dis

continuous as analytical functions, we fall on a difficulty , which seems first to

have been felt in the integration of partial differential equations * , and which is

evidently insurmountable in any state of analysis. I mean, the general resolution

of algebraic and transcendental equations, involving arbitrary functions of the

unknown symbol. Laplace, in his Memoir, has taken no notice of this circum

He has indeed introduced an arbitrary function of cos 2n 2 in the

integration of his equation, which corresponds to our { 47 } , but simply a constant

in the other, where this difficulty takes its origin . In consequence of this

omission, all the examples he has given of his method, although by no means

limited, are yet very far short of that extreme generality, which the nature of the

case admits. - We would not however be misunderstood. It would ill become us

at any time, but more especially under the present circumstances, to criticise

unguardedly on the models of admitted excellence . All that we intend by the

preceding observation is , to add one more to the innumerable instances, where

the simplicity of a remark has been the cause of its eluding notice, in the career

of elaborate and successful research .

We come now to the general problem ; to determine the form of a function,

whose characteristic is p, so as to satisfy the condition

0 = F { x, ¢ { ( 1 ) F (x) } , 0 {(2)F (x)} ,.... 0 {{n +1)F (x)}} { 42 }

F, "F, .... (n + ' F , being given characteristics. It is evident, that the foregoing

method, in its present state , will not apply here ; for the equations

(1) F (x) = Uz , (2) F ( x) = Uz + 1 , .... (n + 1 )F (x) = U. + n

will not necessarily hold good at once of . But we shall be more successful, if we

* Euler. Inst. Calc. Int . tom . III. Probl. 12.

+ If, however, this should happen, we need go no farther. For instance, in the equation noticed

by Paoli , and delivered by Lacroix, in the third Vol . of his Diff. and Int. Calc . (Art . 989.)

+ 'A, .u + ......"A, . Uz + B ,

an -10

0 = u

a " x

integrated by the former, in the case of B, = 0, and 'A, &c. constant, by the substitution of a x M

for u ,, and on which Lacroix remarks , rather too generally , “ La même méthode,” (celle de Laplace,)

s'applique sans difficulté aux equations des ordres superieurs . "

1
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proceed as follows. In the place of one variable x, assume n quantities %( 1 ) ,

%(2) , .... %<») functions of x , to be determined so as to satisfy the following system

of equations

( 1 ) ...... ( 1)F (x) = U

2 (1) , 2 ( 2) , ....... %(n )

(2) (2) F (x) = u
2013– 1 , 2(2) , ....... (m)

(3) . (3)F (x) = U

2(1), 2 (a)-1, ...... 3(M)
{ 48

(n + 1 ) ..... (n + 1 )F ( x) = u
2 (1), 2 ( ) , ...... Zim) - 1

from which, eliminating X,eliminating x, we find

% (1) - 1 , %(9) .... m }(1)........( F-!{Uzm .....2m } = ( F-' {u

(2) ... ) = ⓇF -1 ( 20),5( – 1...... }( " F - 1 {U.zo .....am]

• { 49 )
.

( n ) ........ ( F- U2(1), ....... = (n + 1) F
m }

- ' u
% (n) % (1 % (9{u , )و).......-

These are equations of partial differences of the first order, whose integrals

will be of the form

(1)....u
%(1) ....... (w)

= ( U
{ Z(1)g .... % in), (" C (cos 2 T % (1),2 (2) ,. ..

) •Kin)) }

(2) .... u
2 (1), ...... % (m)

= (° U X ) ({ Z(1) . ...% n), (?)C ( (1), cos 2T Z(2)). ...%(n))}

;. ... {50 )

( 7) .... …, = ( U { %(1 ) ,. . • % ( ) (n)C (%(1), %(2)) ....cos 2777 %(n))}(1), ......2

where ( U , ....( U , are known, and (" C , ....( C arbitrary characteristics.

Now we have

x = " u(( F-' U )20)....... 2 (a)

2 C
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which substituted for x in ( 42 ) , gives

0 =

= F {{"F 'M)0...to (ou),,,... Zim » (ou)z.20) 1 , ... (n) -(Puneay ... 1} ... {51

an equation of partial differences of the usual form , in which (pu) is the unknown

characteristic , and which is of the first order with respect to each of the

independent variables. The integration of this will give us

( o 2 (1) , ....... (n)
$ (U 20),.....(m ) = 0 { " F ( x )} = w {Z(1),....% (n ), '0, 0 , & c. }

w being the characteristic of a known function , and ' , , &c. being the arbitrary

functions of the variables and of cos 2 %( 1 ) , &c . introduced by the integration .

Now, by elimination from the n equations {50}, %(1),....Z(w) are given , (or

may be conceived to be given) in functions of u or of ( F (x) . Conceive

these values of %( 1 ) .. & c . to be substituted in the expression

2 (1) , ...... 2 (n)

w { % (1), .... ( ) , '0, 0, & c. }

and it will become a function of " F (x ), which we will denote by W ("F( x).

Thus we have

φF (α ) W (" F (x) ; and p = ū

This reduction of the equation ( 42 } to an equation of common differences,

leaves nothing to desire in point of generality , at the same time that we must

confess the operations required to be for the greater number of cases impracticable

in the present state of analysis. This however, is no fault of the method itself,

which , as we have said, supposes the absolute perfection of the ordinary analysis,

and of the theory of finite differences. We may form some idea of the great

generality of the resulting function, from the consideration that, independently

of the arbitrary functions introduced in integrating { 51 } , the values of

2 (1) , ... % ) to be substituted in w { Zu ), .... Z ) , &c. } result from a series of

eliminations between n equations, each of which contains an arbitrary function of

n - 1 of the quantities to be eliminated , and of the cosine of 27 x into the

remaining one . Nor can any reason be assigned why these functions should be
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limited to analytical expressions, and not rather depend on no analytical law

whatever, or on a variable one * .

We will now proceed to examine the general functional equation, involving

two variables

o ,= F {2,9,$ {" F(x)," f (y) }, ¢ {« F(x), f(y)}......0 { v + "F (x), (•+« f(y)}};.... . {43 }

F, (» F ,. ...(4+1)F , (»f ....(n+1 f , being given characteristics.

Assume two series of quantities

2 (1), (2), ....2m), and, i) , 2) .....(

( 2)

(n )

functions respectively of x and y, which shall satisfy the equations

( 1F( x) = X28 , 24).
283 , 28) , ... 28

(+F (x) = X
28-1, 28) , ... 2

"f(y) = Y
23), 28 , ... 23

(a) f (y ) = Y
28-1, 2 , ...22

52, 11
and

; ... 52,2)

(n+° F ( x) = X 283,283 .... (n+1)f (y) = Y % , 43, ... 293–1, 28-1

analogous to the system of equations { 48 } . From these, eliminate (as before)

x and y, and we obtain

wf- {x_....

{ 20} = "- { XC, 71-1, ....ce? { 53 , 1 }

..} = ( F- {X2–1,
(1)

% 11) ' * (* )

(1) F - 1 X
ر
ج

mp- {x_..... } =«+»P- {X , ...-1}

* A discontinuous function of one variable, may be represented to the sense by the ordinate

of a curve traced at random on a plane ; of two, by that of a curve surface, any how spread forth

in space. For more than two, we must have recourse to other considerations than those afforded

by the modes of extension . We will add one remark . If any discontinuous function ( m ), be

do ( )

represented by the ordinate of such a curve, as we have described , then will Do (x) or ,
2 (x )

be represented by the ordinate divided by the subtangent, sdr . { 1+ (D (x)) } by the arc,

D - 1 ° ( x ) by the area , and so forth , just as when o is the characteristic of an analytical function .
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and, similarly,
1

(» f- {Y. 9.... } = (08- {Y-C -1,6% ,, ... )

" f- {Y....... } = f- (Y ), 3-1,....} • { 53 , 2 }

"f-{ Y......} = ( +1f- {YOK ,= « »»g -!{Y5 ....-1}

The integration of these equations (being of partial differences) gives

X and Y in the following forms :

% 1}, ...

1

oll) , (2)

( 1) > •

( 2 )

(1)

x (1)
х

( 1) ) ....

23) }all)

.. ( »F (x) ( * .= " UJ^ { % .....6 ,("C""(cos2re,&

(*U " { ....
X S

( 1 )F (2) 2) , (?)C "" (21) , cos 2 72%!
2 (1) 2 (1)

.

*( n )

X
(

% 1) ,.... (n )

2 (1)

Y

(" F ( x ) = ( [^ {% ... -2 ,("C ")(z" ,2 ,....cos 2 " < %) }

:( "f(y) Um{
23 , ( "C(2) (cos 27 % og .< ) }

( "f(y) = (2) U (2)= ( U “ { , (2)CP) (20 , cos 2 32g ....2.) }

(1) U (2)
(2 )

• • • •( 9) =

(n)

*(x) )

Y
(2) ( 9)

% (m)(1 ) ....

%
( 1)

Y (2 )

(2)

( 1 ) , • • • . ( a)
(?) C,(n)C (2)(28), ), .... cos 27 (2) }

( "f(Y) = (WUJøy {( 2)
( 1) > •

( 1)

% * ) و
&

(*)U ("),....WU",(" U ( ),....(" U ( being determinate and given, but (" C (1), .(» C "),

(° C (2), ( C ” , arbitrary characteristics. From these equations, 21),

and 2. ,. ... are given by elimination in functions respectively of ("F (x), and

of " f (y) . This operation which we shall have occasion to refer to , let us

denote by {A } : let us also express

$ {x
Y

(1) , ex (2)

* (x ) % , . % n))

f
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by the functional symbol

w ( 1)

% 1)

( 2 )

•
..

% (2)و(1)د••••(9)
.

2 y, and of 23; z(2)
.

.

(1) ,for it is evidently a certain function both of (1

The proposed equation (43 }, becomes then

o = F {(WF-' X) 2 (1 ), ( " f -' Y ) ,12)
w(2 ), W , w W

% (1)••
เ %(n)

% u "
-1 }2-1, -1) 2-1,2-1 menge 1 ,

(n )

where, in the indices of w, all the letters that have not varied, are omitted

for the sake of brevity. This is again an equation of partial differences of the

common form , involving 2n variables, but, as it happens that these vary through

out the equation by pairs, and similarly, it may be reduced to another with only

Let us now call the value of wzm ... & c.
deduced from this

w {2 ) . ...mom , 2 ,..... , '0, 20, & c.}

'0, 20, &c. being the arbitrary functions, &c. introduced by the integration

12 .

Now for 21;, . ... & c ., and 2 ),.... & c. substitute their values in functions

of ( 1 )F (x) , and " f ( y ), found by the operation { A } , and this expression will

become a function of ( "F ( x ), and " f ( y ), which we will denote by the charac

teristic w. We have then

© {*F(x)," F(9)}= w .....= {°F (*), f(y)}

and consequently ,

P = ū

We have said enough to indicate the method of proceeding, whatever be

the number of symbols, x , y, z, &c. , relative to which the unknown characteristic

♡ is taken .

It will not be uninteresting to examine how far this theory may be applied

to cases , which may actually occur, so as to fall on none but integrable equations.

Now, it is easily seen , that any functional equation of the form

0 =¢ {« F( x), "ºf(y),..}+ 'A.¢ {*F(x)," f(y)...}+..."A.¢ {"+"F(x),( +"f(y),...}+ B;....{54}
2 D
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in which B, 'A , .... "A, are constant, leads to an equation of partial differences,

integrable by Laplace's process * . This functional equation may therefore he

resolved , provided we can integrate the preliminary equations of the first order,

which may always be treated as equations of simple differences with only one

variable, and with constant coefficients. A vast variety of cases might be

imagined in which this may be accomplished, among which we may enumerate

the following :

First, when ” F ,.... & c . , " f , .... & c ., & c. , are the characteristics of

rational algebraic functions of the first degree ; which comprehends the equations

J'a + ºbx
0 = 0 ++ ' A .

lc + dal

'a + ' b x )

+
'ct'dx

" A.C....." A
(

" a + "bx} + B ;......{55, 1 }
0

" C + "des

0 = φ

ºa + bx ' a + °By

°C + °d x'ory +08 + ......"A.
s" a + "b x "a + "By

"C + "dx'rny + " & yl
+ B ; .... {55, 2 }

у.

&c. = & c .

for, in this case, the general form of the preliminary equations is

s'a.ºd – 16.°c7
0 = U2+ 1 •U ,,+ Uz +1.12 . ° c

+ U,

ic.ºd
( i) ( i) ( i)

ic.ºb- id .

lid.'c - ic.ºd

çib.ºa – 'a.ºb
Td.ºc_ic.od

;

which we have previously shewn how to integrate. The details of this case

would be found highly interesting, were it not for the necessity of studying

compression as far as possible, to allow room for a few words on objects of

superior importance. There are two cases, however, which afford a remarkable

simplification ; the first is, when any, or all of the following equations hold good,

Oc 2c "aic с

de od =
& c.;

'a "a

16 ,

Pa

b

&c. &c
ob ܝ0ܐܠ

the second, when

.
.

°c = 'c = ?c = &c. = 1
9 and d = 'd = &c, = 0.

Cousin. Lecons de Calc.* Savans Etrangers. 1773. Probls. VI . and IX. pages 90. and 110.

Diff. et de Calc . Int. Part II. page 735. et suiv ,
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and similarly, for'a, 'a, &c. , ° ß , & c . , &c. The functional equations then take

the forms

0 = ” {'a + ºb x } + 'A. ¢ { 'a + 'bx } + ...." A . $ {" a + "bx } + B ; ......{55, 3 }

0 = ” {'a + ºbx , ºa + °ß y } + ......"A. ¢ {" a + "bx , "a + "By }+ B ; . ..... { 55,4 }

The second general case which admits of solution is , when ("F, &c. , (" f , &c.

are the characteristics of functions of the form a x , which embraces such

equations as

o = u + 'A.4 + ?A.428 +
"A.u

+ B ; ....... . { 56, 1 }2 + + B

0 = $ {"axº } + 'A. ¢ { 'axb} + ......"A.° { "ax*'} + B ;....{56,2 }

0 = 0 { 'ax®, 'ayºl } + .."A.¢ {"ax"), "Qy ß } + B ;......{56 ,3 }

&c. = &c.

The third case is, when " F ( x ), &c. are of the form a.c* , as in the equation

0 = 0 {°a .°c"} + ...... "A. ¢ {" a ." } + B ; { 57 }

We must here notice also, that any combination of the above forms, after

the manner of the following instance, is susceptible of resolution ;

0 = ¢Let op,vay9,7.43}+.... A.****+

13

"ay
" C + "dr' "ny . "8} +B ; . • { 58 }>

The reason of which is evident, on a mere inspection of the equations { 53, 1 } ,

and { 53,2 } .

There is a case which we have not yet considered , viz. when the unknown

function of a simple constant is involved in the equation, as in the instance

0 = $ {x ?} - (x) - (a ).

Now , whatever be the form of the function o, it is evident, that q (a) will

be independent on x , and consequently, if we suppose (in the case before us)

W , = x , Wat i = x = u
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independent also on z . Thus, in the equation

0 = $ (U : +1) – 0 (u .) – º (a)

• ( a ) must be considered as constant, which gives

(ou), = 2.0 (a) + f { cos 24 % }

Thus,

♡ (x ) = º ( a ) .u - ' ( x) + f { cos 2 m u -' (x )} ;. . (g)

Meanwhile, the equation u , t1 = u , gives

{ F ( cos 2 + 2) } 22Uz =

To avoid complication, we shall take only a particular case of this , viz .

when F {cos 2 # % } = constant = c, or, uz = c?" , and writing for %, u - ' ( x ),

u-' (x)
log ’r – log ? c

uu-' (x) = x = c2 and u- * (x)

log 2

which substituted in (g) , gives

log 2x– log ²c 2 (log ? r – log 2c)
$ (x) = + (a ) .

log 2 log 2+ f {cos 2m(long term logºc)}

Now, let x = a, and we have

log ?a – log ?c

φ (α ) = φ (α) f
log'a – log

log 2 2

which gives

log 2

• (a) .f {cos
log ‘a – log ºch

COS 2 T.

log 2 – log ’a + log ?c log2

from which, we obtain

log * x – logºc

(x) log2– log "a* log c• f {cos 27. long long te}+$ {cos+$ {cos 21. log tom logas

and the simplest form of $ (r), which answers the condition, is

$ (x ) =
log ’ r – log a + log 2

log 2 - log ’a
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We have been thus explicit in stating the preceding operations, in order to

shew clearly, that we have no right to consider ♡ (a) in such an equation as the

proposed, in the light of an independent arbitrary constant ; its value being

determined by the nature of the function f , and by the equation which arises

from the substitution of a for x , in the value of ♡ (x) . The same considerations

will apply to any functional equation with one variable, involving any number

of quantities, such as ♡ (a ), • (b )....; or to a functional equation in more

variables than one, involving expressions of the form

( a , b, c ,.... ), º ( d', b , c, .... ) , &c.

Should expressions, such as ” (a, y ), $ (x, b, 2, .... ) , &c. enter into the

proposed equation, we must, in like manner , consider them as determinate, but

unknown functions, and, according to the principles above delivered, deduce an

expression for ♡ { x, y, %,. ... } , ofthe utmost possible generality, and which will

involve these particular functions.

To fix our ideas, let us conceive only two variables, x , y, and one particular

function , • (a, y) . We shall have then

(x, y) = F {x, y, • (a, y) , 'Do (a, y), 'Dº (a, y),.... } ; ...... (h)

'Dº (a, y), *Dº (a, y) , &c. denoting functions of a and y, any how derived,

according to known laws, from ø ( a, y) . The supposition x = a, gives

Ø (a, y) = F { a, y, (a, y) , 'D • (a, y) , 'Dº(a,y), .... }

a functional equation in one variable, which suffices for the determination of

(a, y) . The value of this, so found, being substituted in ( h), gives the com

plete expression of q (x, y) .

We shall now proceed to consider cases where not only the unknown function

♡ (x , y ,....), but, also its differential coefficients of any order, taken with

respect to one or more of the variables, are involved. Let us conceive, (in the

case of one variable x,) that the proposed equation contains such expressions as

Dº { F (x) } , D '$ { F (x) } , &c.

2 E
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After making substitutions similar to those already described , the equation

will, besides the terms

>

(n(1)و....ة
(pu)

&c .

% (1) – 1,.... 2( ) '

contain functional terms of the forms (DP) u, (pºp) u,D'p ....

where in the derivations x is considered as the independent variable, and which

it remains to transform into such expressions as D (pu) , d' (pu) , &c. so as to

reduce the equation to one of mixed differences, where (pu) is the characteristic

of the unknown function . Now this is easily accomplished, as follows:

( 1.0) u
dou)

du

1

D. (pu)
DZU

1 1d {(1,0 )

(PP) u =
du

Dr.

D D, (φu)
DUDxU

1 1 1

(DP) u =
d {(D", 0 ) u

du

De Da. D , ( pu )
D, uр, и Du

&c. &c . &c .

where it must be observed, that y being the characteristic of any function of x,

or, of any implicit function of 2( 1 ) ,. ...Zn) , we have

DZY
dy

dx

od nadzo + Columns) d3y + & c

dit ) dzw + (dj ) dz09 + &c.d 2 (1

With regard to the denominator,

64 ) d20+ ( t) dsm + &c.

1

no difficulty can arise, since x is given in functions of (1) . ... by the preliminary

equations, as in { 48 } , and u being, as in the former cases, the characteristic of

a known function in these variables, we may thus readily express 1.0 (u) , &c.

in the required form . Similar considerations will apply, when the unknown

function p is taken with respect to more than one variable x , y, 2 , .... &c. but

DU
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1

i

perhaps it is needless, in the present state of analysis, to push our enquiries farther

on this head .

Thus we may regard the theory of functional equations of the first order as

complete, whatever be the number of variables they involve . By equations of

the first order, I mean , such as involve simply the unknown function 0, and its

derived functions any how combined with the variables X , Y, .... &c. Such

equations as involve at the same time o, and p, or o P, and their derived

functions, may with great propriety be termed functional equations of the second

order, and so on . For example, the equations

{ p (x) } ' = 0 (2 x) + 2

♡ (29) = q (m x) + P

solved by Laplace, as well as

" { BA
(a − b) (A - C)

( bBay} - $ { 6-0 } ( A ( )
и

integrated by Monge, are of the first order. The following

0 = 0 % (x ) + Ac . (x) + B.

+ er
da 0 ( 2)

+ Cc0 a b } " A
+ d xn

0 = A , + B, .dº (x) + C4.fdx.0 (x — xº)

are of the second . Such equations also as

P { A, + B..0 (C )} = E ,

may be classed among equations of the second order, as, by taking the function

- on both sides, we find

0 = A, + B... ” (C ) - 8 - ' ( E .)

where the difference between the greatest and least indices of $, is 2.

The theory of functional equations of the second and superior orders, appears

extremely difficult, and at present we can hazard nothing general on the subject,
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farther than simply this. Conceive ♡ (x) to be a certain function of x , and any

number of constants, a , b, c ,.... & c.

From this expression, conceive p *(x ), 03 (r ), ....0 " (x), to be successively

formed, which will of course be functions of x, a, b, c, &c . and we may therefore

suppose n such equations as the following to exist cotemporaneously

( 1 ) ...

(2) ...

♡ ( x) ' f { x , a , b,.... }

0 (x ) = f { x, a, b,. ... }

( i)

(n )......6" (x) " f { x, a, b, .... )

From these equations, it would be possible to eliminate (n - 1 ) of the quan

tities a, b, c , .... , and since the resulting equation

0 = F { x, 0 (x), pº (r),. ... 0 " (x) } ; { 59 }

is independent of the quantities so eliminated, and consequently the same, what

ever values we assign to them , they are in fact arbitrary, so far as regards this

equation. In reascending then from the equation { 59 } to the complete expression

of • (x) , (which we may be allowed to call its integral,) we must introduce (n - 1 )

arbitrary constants. Again, suppose the elimination to have taken place only

between m of the equations (i) ; ( (i, n) being one of them,) and m any number

less than n, and the resulting equation will contain m of the functional terms

$ (x ),....9 " (x). At the same time, m- 1 of the constants a, b, c ,.... will

have disappeared. Hence this theorem ; that, the integral of a functionul

equation, of whatever order, containing m functional terms, in which the quan

tities under the several characteristics 0, 0, .... are the same throughout,

involves m- 1 arbitrary constants ; and reciprocally, if an expression for the

unknown function can be found, involving m- 1 irreducible arbitrary constants,

it is the complete integral.

Let us suppose, for example, © (x) = a + bx, an equation which gives

φ' ( )* (x) = a ( 1 + b) + b* x

03 (x) = a ( 1 + b + b* ) + b3 x.
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Eliminating a from the two first, we find

0 = p' (x) – ( 1 + b) . ( x ) + b x .

1

Had we eliminated b, we should have had

0 = q* ( x) +
a.Q (x ) — { p (x) }"

a.

X

Again, making use of all three equations to eliminate both a and b ,

0
(pºx– º x )

px - x
(px) + x . $* x + (2 9 x – x — X ) . 93 x

If we suppose p (x, y, z , ... ) to denote any function whatever of x, y, 2, ... ,

and conceive this expression substituted for x, thus,

$ { p (x, y, %,...), y, %, .. }

we shall have the second

partial function, taken with respect to x only ; if this be again substituted for x ,

the third, and so on . In like manuer, we may form the successive partial

functions with respect to y, %, .... If the mth partial function with respect to x ,

be in the same manner continually substituted n times for y, in the expression

$ %,.( x, y, z, .... )

we shall obtain a result, which we will denote by

m , n, 1 , .... (x, y, % ,.
φ (x, y, z, .... )

and so on to

Øn,m , n,Por " * (X, Y, Z, .... )

This notation is indeed imperfect, as it will not express any variations we may

make in the order of taking the functions, which is not here, as in the theory of

partial differentials, a matter of indifference : but it will suffice for our immediate

purpose which is merely to indicate the existence of a calculus of partial functions

of a description entirely new.

2 F
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The following are equations of partial functions :

0 = 0 2 1 { x, y } + A.,y . ° 1,2 { x, y } + Bc,y

0 = 0 % 1 , 1 { x , y, x } + A.,y,z • ° *01,2, 1 (x , y , z } + &c.

A question may arise, from what we have already seen of the manner in which

arbitrary functions enter into the integrals of functional equations ; whether the

application of such equations be really sufficient, entirely to determine the forms

of arbitrary functions contained in the integrals of equations of partial differentials,

by particular assigned conditions . Nor, indeed , does it seem possible to demon

strate that, from such integrals, after going through the operations above de

scribed, (or rather conceiving them to have been gone through ,) with the utmost

regard to generality, every arbitrary term should necessarily, and in all cases,

vanish of itself. Should they not, new conditions must be assigned, and new

functional equations resolved , whose integration will introduce fresh arbitrary

functions, and so on, without the prospect of an end. The denouement of these

difficulties seems reserved for a far more advanced state of Analytical Science, than

we can at present boast of having attained .
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