The cyclopædia; or, Universal dictionary of arts, sciences, and literature. by Abraham Rees ... with the assistance of eminent professional gentlemen...
Rees, Abraham, 1743-1825.
London : Longman, Hurst, Rees, Orme \& Brown etc.], 1819.
https://hdl.handle.net/2027/mdp.39015011957639

Public Domain

http://www.hathitrust.org/access_use\#pd

We have determined this work to be in the public domain, meaning that it is not subject to copyright. Users are free to copy, use, and redistribute the work in part or in whole. It is possible that current copyright holders, heirs or the estate of the authors of individual portions of the work, such as illustrations or photographs, assert copyrights over these portions. Depending on the nature of subsequent use that is made, additional rights may need to be obtained independently of anything we can address.
invented the mood we call imperative; which has no firft perfon in the fingular, becaufe a man, properly fpeaking, cannot command himfelf; in fome languages it has no third perfon, becaufe, in Atrictnefs, a man cannot command any perfon, but him to whom he fpeaks and addreffes himfelf. And becaufe the command or, prayer always relates to what is to come, it happens that the imperative mood, and the future tenfe, are frequently ufed for each other (efpecially in the Hebrew): as, non occides, thou 乃alt not kill, for do nst lill. Hence fome grammarians place the imperative among the number of futures.

Of all the moods we have mentioned, the oriental languagés have none but the laft, which is the imperative; and, on the contrary, none of the modern languages have any particular inflexion for the imperative. The method we take for it in Englifh, is either to omit the pronoun, or tranfpofe it : thus, I love, is a fimple affirmation; love, an imperative ; we love, an affirmation; love we, an imperative. An infinitive verb is fometimes ufed by the poets to exprefs a command; the imperative verb being underftood.

In explaining the origin of moods, the ingenious Mr . Harris oblerves, that the foul's leading powers are thofe of perception and volition; and that all Speech or difcourfe is a publifhing either a certain perception or volition. Hence then, according as we exhibit it either in a different part, or after a different manner, the variety of moods. If we fimply declare or indicate fomething to be, or not to be, whether a perception or volition, this conftitutes the declarative or indicative mood. If we affert of fomething poffible only, and in the number of contingents, this makes the potential mood. When this is fubjoined to the indicative, and ufed, as it moftly is, to denote the end or final caufe, it is the fubjuncive. When we addrefs others, in order to have fome perception informed, or fome volition gratified, we form new modes of fpeaking : if we interrogate, it is the interrogative mood: if we require, it is the requiftive, which, with refpect to inferiors, is imperative; and, with refpect to equals and fuperiors, precative or optative. The indicative, potential, interrogative, and requifitive moods, have their foundation in nature; and, therefore, certain marks or figns of them have been introduced into language, that we may be enabled by our difcourfe to fignify them to one another; fo that moods are, in fact, no more than fo many literal forms, intended to exprefs thefe natural diftinctions. All thefe moods, with their refpective tenfes, the verb being confidered as denoting an attribute, have always reference to fome perfon or fubftance. But there is another mood or form, under which verbs fometimes appear, where they have no reference at all to perfons or fubitances: thefe, from their indefinite nature, are called infinitives. Hermes, p. 140, \&c.

Mood, or Mode, in our old Mufic, was a term only applied to the divifions of time or meafure, which was fo embarraffing a ftudy, that a very confiderable portion of Morley's treatife is beftowed on that fubject. Previous to the ufe of bars, all meafures, however complicated, were determined by the modal figns placed after the clef of every compofition. Thefe figns were circles, femicircles, pointed, or without points, followed by the figures 2 or 3 differently combined. See Mode, Modal, and Prolation.
Rouffeau gives twelve examples of ancient characters of quantity; but as thefe were characters referred to notes now out of ufe, as the maxima, the long, and the breve, thefe explanations can be of little confequence but to thofe who are ambitious of knowing the fate of meafured mufic at every period of its cultivation.

Mood, in Pbilefophy and Mufic. See Mode.
Vol. XXIV.

MOODUL, in Geography, a town of 'Hindoottan, in Vi。 fiapeur ; 13 miles S.S.W. of Galgala.

MOODYPOUR, a town of Hindooftan, in Bengal ; 28 miles N. of Pucculoe.
MOOGONG, a town of Hindooftan, in Goondwanah; 50 miles N. of Nagpour.
MOOGPOUR, a town of Hindooftan, in Guzerat ; 3I miles E.N.E. of Janagur.

MOOGRY, a town of Hindooftan, in Vifiapour; $\$ 1$ miles W. of Poonah.

MOOKANOOR, a town of Hindooftan, in Baramaul; 18 miles S.S.W. of Darempoory.

MOOKER, a town of Cabuliftan ; 40 miles from Ghizni. -Alfo, a town of Hindooftan, in Madura; 40 miles E. of Coilpetta.

MOOKI, a fea-port town of Japan, in a bay on the S.E. coaft of the inland of Niphon; 80 miles S.E. of Jedo. N. lat. $35^{\circ} 30^{\prime}$. E. long. $40^{\circ} 40^{\prime}$.

MOOLA, a town of Hindooftan, in Vifiapour; 10 miles E. of Poonah.

MOOLILLY, a town of Hindooftan, in Myfore; 20 miles W.N.W. of Allumbaddy.

MOON, Luna, © , in Alronomy, one of the heavenly bodies belonging to that clafs of planets, accounted fatellites or fecondary planets.

The moon is an attendant of our earth, which fhe refpects as a centre, and in whofe neighbourhood the is conftantly found; infomuch as, if viewed from the fun, fhe would never appear to depart from us by an angle greater than ten minutes.

As all the other planets move primarily round the fun, fo does the moon round the earth: her orbit is an ellipfis, in which the is retained by the force of gravity ; performing her revolution round the earth, from change to change, in 29 days, 12 hours, 44 minutes, and round the fun with it every year; fhe goes round her orbit in 27 days, 7 hours, 43 minutes, 5 feconds, moving about 2290 miles every hour; and turns round her axis in the time that the goes round the earth, which is the reafon of her keeping always the fame fide towards us ; and that her day and night taken together are as long as our lunar month. See Libration of the Moon.

The mean diftance of the moon from the earth is $60 \frac{1}{2}$ femi-diameters of the earth; which is equivalent to 240,000 miles.

The diameter of the earth is to that of the moon as 1 I: 3, or as $1: 0.2727$ (fee Parallax); therefore, the magnitude of the earth is to that of the moon as I: .O2028, or very nearly as $49: 1$; and the denfity of the moon being to that of the fun as $2.44: 1$, and the denfity of the fun being to that of the earth as $0.252: 1$, it follows that the denfity of the earth is to that of the moon as $1: 0.6149$; therefore, the quantity of matter in the earth is to that of the moon as $1: 0.1245$. But if, with fome authors, we affume the denfity of the moon to that of the fun as $2.5: 1$, the quantity of matter in the earth is to that in the moon as $78: 1$, or $1:$.OI28. Alfo, the gravity of a body upon the earth is to that upon the moon as $1: 0.1677$. The apparent diameter of the moon, as feen from the earth, varies, according to M. de la Lande, from $29^{\prime} 22^{\prime \prime}$ when the moon is in apogee and conjunction, to $33^{\prime} 31^{\prime \prime}$ when in perigee and oppofition: its mean diameter being nearly equal to the leaft apparent diameter of the fun, it may be taken at $3 I^{\prime \prime} 8^{\prime \prime}$, and that of the fun at $3^{2^{\prime}} 2^{\prime \prime}$. M. de la Lande makes it to be $3{ }^{\prime}{ }^{\prime} 26^{\prime \prime}$. (See Drclination and Diameter.) Its mean diameter, as feen from the fun, is $4^{\prime \prime} .6$. The mean diameter, in Englifh miles, is 2180. The mean diameter,
as above fated from M. de la Lande, is the arithmetic mean between the greateff and leaft diameters: the diameter at the mean diftance is $31^{\prime} 7^{\prime \prime}$. When the moon is at different altitudes above the horizon, it is at different diftauces from the fpectatur, and, therefore, there is a change of the apparent diameter; which is inverfely as the moon's dif. tance. The diameter of the moon may be meafured, at the time of its foll, by a micrometer; or it may be meafured by the time of its paffing over the vertical wire of a tranfit telefcope, which mult be done when the moon paffes within an hour or two of the time of the full, before the vifible dife is fenfibly changed from a circle. The moon's furface contains $x 4,898,750$ fquare miles, and its folidity $5,408,246,000$ cubical miles. The mean excentricity of the moon's orbit is 0.05503568 of her mean dittance, which is equal to about 13,200 miles; and this makes a confiderable variation in that mean diftance. This excentricity, however, is fubject to a variation, the greatef variation from the mean being 0.00986 ; the excentricity being increafed whilft the apfides move from quadratures to fyzygies, and decreafed whilft they move from fyzygies to quadratures. (See the annexed table.) The correfponding greatelt equation is $6^{\circ} 18^{\prime} 3$ x. 6 , 6 , which Mayer makes to be $6^{3} 18^{\prime} 32^{\prime \prime}$ in his latt Tables, publifhed by Mr. Mafon, under the direction of Dr. Makelyne. The inclination of the moon's orbit is alfo fubject to a variation. When the moon is in fyzygies, the variation ($=2^{\prime} 40^{\prime \prime} \cdot 7$) is the diminution of the inclina. tion in the tranfit of the moon from the nodes (in quadratures) to fyzygies; the half of which ($\mathbf{I}^{\prime} 20^{\prime \prime}$) is the variation from the mean inclination in that time. Hence, in the tranfit of the nodes from fyzygies to quadratures, when the moon is in quadratures, the variation of the inclination has been $16^{\prime} 10^{\prime \prime \prime}-I^{\prime} 20^{\prime \prime}=14^{\prime} 50^{\prime \prime}$, and when the moon is in fyzygies, the variation has been $16^{\prime} 10^{\prime \prime}+1^{\prime} 20^{\prime \prime}=17^{\prime} 30^{\prime \prime}$; therefore, if the inclination be $5^{\circ} 17^{\prime} 20^{\prime \prime}$, when the nodes are in fyzygies, the leat inclination becomes $4^{\circ} 59^{\prime} 50^{\prime \prime}$, atd the mean $=5^{\circ} 8^{\prime} 35^{\prime \prime}$.

In order to determine the inclination of the moon's orbit to the plane of the ecliptic, obferve the moon's right afcenfion and declination when it is 90° from its nodes, and thence compute its latitude; which will be the inclination at that time. Repeat this obfervation for every diftance of the fun from the earth, and for every pofition of the fun in refpect to the moon's nodes, and the inclination at thofe times will be thus found. Hence it will appear, that the inclination of the orbit to the ecliptic is variable, as we have already ftated, the leaft inclination occurring when the nodes are in quadratures, and the greateft when they are in fyzygies. This inclination partly depends upon the fun's diftance from the earth. As the axis of the moon is nearly perpendicular to the plane of the ecliptic, this planet has fcarcely any difference of feafons. The place of the moon's nodes may be determined in the manner ftated under Nodes; which fee. To dotermine the mean motion of the nodes, find the place of the nodes at different times, and thus will be obtained their motion in the interval; and the greater this interval, the more accurate will be the refult.

The mean motion of the moon is found by obferving its place at two different times, and thus we obtain the mean motion in that interval, fuppofing that the moon has had the fame fituation in refpect to its apfides at each obfervation; if not, provided there be a great interval of the time, it will be fufficiently exact. For determining this, we mult compare together the moon's places, firt at a fmall interval of time from each other, in order to get nearly the mean time of a revolution; and then at a greater interval, in order to obtain it more exacly. The moon's place may be
determined directly from obfervation, or deduced from an eclipfe. The mean time of a revolation of the moon was found from ecliples at a diftant interval to be $27^{\mathrm{d}} 7^{\mathrm{b}} 43^{\prime} 5^{\prime \prime}$, which may be confidered as very exact. Hence, the mean diurnal motion is $13^{\circ} 10^{\prime} 35^{\prime \prime}$, and the mean bourly motion $32^{\prime} 56^{\prime \prime} 27^{\prime \prime \prime} \frac{1}{2}$ M. de la Lande makes the mean diurnal motion $13^{\circ} 10^{\prime} 35^{\prime \prime} .02784394$. This is the mean time of a revolution in refpect to the equinoses. But, as the preceffion of the equinoxes is $50^{\prime \prime} .25$ in a year, or about $4^{\prime \prime}$ in a month, the mean revolution of the moon in relpect to the fixed ftars muft be greater than that in refpect to the equinox, by the time which the moon takes to defcribe $4^{\prime \prime}$ with its mean motion, i.e. about $7^{\prime \prime}$. Heace the time of a fidereal revolution of the moon is $27^{d} 7^{\mathrm{h}} 43^{\prime} 12^{\prime \prime}$.

The mean borary motion of the nodes of the moon's orbit in one fynodic revolution is equal to half their horary motion when the moon is in fyzygies, whatever be the pofition of the nodes. When the nodes are in quadratures and the moon is in fyzygies, their horary motion is $32^{\prime \prime} 42^{\prime \prime} 7^{\prime \prime \prime}$; hence the mean horary motion of the nodes when in quadratures is $16^{\prime} 21^{17} 3 \frac{1}{2}{ }^{\prime \prime \prime}$, in an elliptic orbit, and in a circular orbit $16^{17} 35^{\prime \prime \prime} 16^{\prime \prime \prime} 36^{\prime \prime \prime \prime \prime}$. The mean annual regreflion of the nodes is $19^{2} 23^{\prime}$. Allowing for the inclination of the orbit, this motion will be about 4^{\prime} lefs; and we may, therefore, fuppole the mean annual motion to be $19^{\circ} 19^{\prime}$. Mayer makes the mean annual motion of the nodes to be $12^{\circ} 19^{\prime} 43^{\prime \prime}$.I. The motion of the nodes is not affected by the excentricity of the orbit, as fir Ifaac Newton fuppofec.

The motion of the apogee in one mean periodic revolution of the moon is $3^{\circ} 2^{\prime} 32^{\prime \prime} \cdot 391^{6} 6$; hence, $27^{d} 7^{\text {it }} 43^{\prime}$: $365^{\mathrm{d}} 6^{\prime \prime} 9^{\prime}:: 3^{\circ} 2^{\prime} 32^{\prime \prime} \cdot 39^{16}: 40^{\circ} 40^{\prime} 20^{\prime \prime}$ the mean progreflive motion of the apogec in a year. According to Mayer's Tables, it is $4041^{\prime} 33^{\prime \prime}$.

To determine the mean motion of the apogee, find its place at different times, and compare the difference of the places with the interval of the time that had elapfed between them. For this purpofe, compare, firlt, obfervations at a fmall diftance from each other, in order to prevent being deceived in a whole revolution, and then we may compare thofe at a greater diftance. The mean annual motion of the apogee in a year of $36 ;$ days, is thus found to be 40^{2} $39^{\prime} 50^{\prime \prime}$, according to Mayer. Horrox, long ago, from obferving the diameter of the moon, found the apogee fubject to an annual equation of 12.5 . The following table fhews the times of the revolutions of the moon, of its apogee and nodes, as detcrmined by M. de la Lande.

Tropical revolution of the apogee
$8: 3 \times 1834 \quad 57.6177$
Sidereal revolution of the? apogee - $-\quad\}$
$\left.\left.\left.\begin{array}{l}\text { Tropical revelution of the } \\ \text { node }\end{array}\right\} \begin{array}{llllll}18 & 228 & 4 & 52 & 52.0296\end{array}\right] \begin{array}{llll}6\end{array}\right)$
Sidereal revolution of the node $\begin{array}{lllll}18 & 223 & 7 & 13 & 17.744\end{array}$
Diurnal motion of the moon $\}$ in refpect to tise equinox $\}$
$\left.\begin{array}{l}\text { Diurnal motion of the } \\ \text { apogee }\end{array}\right\}$

- $13^{\circ} 10^{\prime} 35 .^{. " 02 \%} 84394$ The years here taken are the common years of $36 ;$ days.

MOON.

A Table of the great Equation of the Moon's Apogec, and of the Excentricity of its Orbit.

Sig. O. VI. +			Sig. I. VII. +		Sig. II. VIII. +.		
$\begin{aligned} & \text { Ann. } \\ & \text { Arg. } \end{aligned}$	Equation of D's Apogee.	Excentricity of the Moon's Orbit.	Equation of D's A pógee.	Excentricity of the Moon's Orbit.	Equation of D's Apagee.	Excentricity of the Moon's Orbit.	$\begin{aligned} & \text { Anr. } \\ & \text { Arg. } \end{aligned}$
Deg. 0 1 1 2 3 4 5	$\begin{array}{ccc} \text { D. } & \text { M. } & \text { S. } \\ 0 & 0 & 0 \\ 0 & 21 & 4 \\ 0 & 42 & 8 \\ 1 & 3 & 10 \\ 1 & 24 & 9 \\ 1 & 45 & 5 \end{array}$.066777 .06677 x .066734 .066724 .066683 $.06663^{\circ}$	$\begin{array}{rrr} \text { D. } & \text { M. } & \text { s. } \\ 9 & 27 & 57 \\ 9 & 42 & 12 \\ 9 & 55 & 58 \\ \text { ro } & 9 & 14 \\ \text { Io } & 2 \times & 58 \\ \text { ro } & 34 & 9 \end{array}$.061754 .061434 .061107 .060772 .060429 .060080	$\begin{array}{lrr}\text { D. } & \text { M. } & \text { S } \\ \text { II } & 40 & 0 \\ \text { I1 } & 30 & 39 \\ 11 & 20 & 14 \\ 11 & 3 & 44 \\ 10 & 56 & 8 \\ 10 & 42 & 26\end{array}$.050224 .049838 .049457 .049082 .048714 .048354	$\begin{gathered} \text { Deg. } \\ 30 \\ 29 \\ 28 \\ 27 \\ 26 \\ 25 \end{gathered}$
6 7 8 9 10	$\begin{array}{cccc}2 & 5 & 57 \\ 2 & 26 & 44 \\ 2 & 47 & 25 \\ 3 & 8 & 0 \\ 3 & 28 & 27\end{array}$.066566 .066489 .066402 .066302 .066192	$\begin{array}{rrrr}10 & 45 & 47 \\ 10 & 56 & 49 \\ 11 & 7 & 15 \\ 11 & 17 & 4 \\ 11 & 26 & 4\end{array}$.059725 .059363 .058995 .058621 .058243	10 10 10 111 188	.048001 .047656 .047321 .046995 $.0466 ; 9$	$\begin{aligned} & 24 \\ & 23 \\ & 22 \\ & 21 \\ & 20 \end{aligned}$
11 12 13 14 15	$\begin{array}{rrrr}3 & 48 & 46 \\ 4 & 8 & 55 \\ 4 & 28 & 54 \\ 4 & 48 & 42 \\ 5 & 8 & 19\end{array}$. 066070 .065936 .065792 .065636 .065469	$\begin{array}{llll}11 & 34 & 43 \\ 11 & 42 & 31 \\ 11 & 49 & 36 \\ 11 & 55 & 57 \\ 12 & 1 & 33\end{array}$.057860 .057472 .057080 .056684 .056285	$\begin{array}{llll}8 & 57 & 25 \\ 8 & 36 & 11 \\ 8 & 13 & 56 \\ 7 & 50 & 42 \\ 7 & 26 & 29\end{array}$.046374 .046081 .045800 .045531 .045275	19 18 17 16 15
16 17 18 19 20	$\begin{array}{lrr}5 & 27 & 43 \\ 5 & 46 & 53 \\ 6 & 5 & 48 \\ 6 & 24 & 27 \\ 6 & 42 & 50\end{array}$.065292 .065103 .064905 .064695 .064476	$\begin{array}{llll}12 & 6 & 22 \\ 12 & 10 & 23 \\ 12 & 13 & 35 \\ 12 & 15 & 56 \\ 12 & 17 & 24\end{array}$.055884 .055479 .055073 .054666 .054257	$\begin{array}{rrrr}7 & 1 & 21 \\ 6 & 35 & 19 \\ 6 & 8 & 26 \\ 5 & 40 & 45 \\ 5 & 12 & 18\end{array}$.045033 .044805 .044592 .044394 .044212	14 13 12 11
21 22 23 24 25	$\begin{array}{rrrr}7 & 0 & 56 \\ 7 & 18 & 44 \\ 7 & 36 & 12 \\ 7 & 53 & 20 \\ 8 & 10 & 6\end{array}$.064246 .064006 . 063757 $.06349^{8}$.063230	$\begin{array}{lll} 12 & 17 & 59 \\ 12 & 17 & 40 \\ 12 & 16 & 25 \\ 12 & 14 & 13 \\ 12 & 19 & 2 \end{array}$	$\begin{aligned} & .053848 \\ & .053438 \\ & .053830 \\ & .052622 \\ & .052215 \end{aligned}$	$\begin{array}{rrrr}4 & 43 & 10 \\ 4 & 13 & 23 \\ 3 & 43 & 1 \\ 3 & 12 & 9 \\ 2 & 40 & 49\end{array}$	$\begin{aligned} & .044046 \\ & .043896 \\ & .043763 \\ & .0436+7 \\ & .043548 \end{aligned}$	9 8 7 6 5
26 27 28 29 30	$\begin{array}{rrr}8 & 26 & 29 \\ 8 & 42 & 29 \\ 8 & 58 & 5 \\ 9 & 13 & 15 \\ 9 & 27 & 57\end{array}$.062952 .062665 .062370 .062066 .061754	$\begin{array}{cccc}12 & 6 & 52 \\ 12 & 1 & 42 \\ 11 & 55 & 31 \\ \text { 11 } & 48 & 17 \\ 11 & 40 & 0\end{array}$.9518 II .051409 .051010 .050615 .050224	$\begin{array}{rrr}2 & 9 & 7 \\ 1 & 37 & 6 \\ 1 & 4 & 52 \\ 0 & 32 & 28 \\ 0 & 0 & 0\end{array}$	$\begin{array}{r} .043467 \\ .043404 \\ .043359 \\ .043332 \\ .043323 \end{array}$	4 3 2 1 0
Sig. V. XI. --			Sig. IV. X. -		Sig. III. IX. -		

N B. The preceding table is taken from Dr. Halley's "Aftronomical Tables;" the argument, called the "qnnual argument," is the diftance of the fun from the nean place of the apogee corrected by its annual equation.

The full moon appears to the naked eye broader than a circular object fubtending an equal angle feen by perfect vifion. In a moon of three or four days old, the illuminated part appears too broad, in proportion to the obfcure part, and likewife feems to extend more outwards, or to have a greater diameter than the obfcure part. Alfo, in an eclipfe of the fun or moon, the bright part appears too broad in proportion to the dark part, and the eclipfe appears lefs than it really is.

This obfervation was made by Forrox, and is accounted for by Dr. Jurin, in his Effay upon diftinct and indiftinet Vifion. Appendix to Smith'sOptics. See Pbafes of tbe Moon.

Moon, Pbenomena of the. The different appearances of the moon are very numerous; fometimes fhe is increafing, then waning ; fometimes horned, then femicircular ; fometimes gibbous, then full and round.

Sometimes, again, fhe illumines us the whole night; fometimes only a part of it ; fometimes fhe is found in the fouthern hemifphere, fometimes in the northern; all which variations having been firf oblerved by Endymion, an ancient Grecian, who watched her motions, the was fabled to have fallen in love with him.

The fource of moft of thefe appearances is, that the moon is a dark, opaque, and fpherical body, and only thines with the light the receives from the fun; whence only that half turned towards him, at any inftant, can be illuminated, the oppofite half remaining in its native darknefs. The face of the moon vifible on our earth, is that part of her body turned towards the earth; whence according to the various pofitions of the moon with regard to the fun and earth, we obferve different degrees of illumination; fometimes a large, and fometimes a lefs portion of the enlightened furface being vifible.

If we look at the moon with an ordinary telefcope, we fhall perceive that her furface is diverfified with long tracts of mountains and cavities; this ruggednefs of the moon's furface is of great ufe to us, by reflecting the fun's light to all fides; for if the moon were fmooth and polithed like a look-ing-glafs, or covered with water, the could never diltribute the fun's light all round ; only in fome pofitions fhe would fhew us his image, no bigger than a point, but with fuch a luftre as would be hurtful to our eyes. The moon's furface being fo uneven, many have been furprifed that her edge fhould not appear jagged, as well as the curve bounding the light and dark places. But if we confider, that what we call the edge of the moon's dife, is not a fingle line fet round with mountains, in which cafe it would appear irregularly indented, but a large zone, having many mountains lying behind one another from the obferver's eye, we thall find that the mountains in fome rows will be oppofite to the vales in others; and fo fill up the inequalities as to make her appear quite round ;-juft as when one looks at an orange, although its roughnefs be very difcernible on the fide next the eye, efpecially if the fun or a candle fhines obliquely on that fide, yet the line terminating the vifible part Itill appears fmooth and even. If the moon have no atmofphere, the lunar inhabitants muft have an immediate tranfition from the brighteft funfhine to the blackeft darknefs ; and thus muft be totally deftitute of the benefit of twilight. See the fequel of this article.

Moon, Pbafes of the. To conceive the lunar phafes, let S (Plate XVII. Afronomy, fig. 5.) reprefent the fun, T the earth, R T S a portion of the earth's orbit, and ABCDEFG the orbit of the moon, in which fhe rerolves round the earth in the fpace of a month, advancing from weft to eaft : connect the centres of the fun and moon
by the right line S L, and through the centre of the moon imagine a plane MLN to pafs perpendicular to the line S L; the fection of that plane, with the furface of the moon, will give the line that bounds light and darknefs, and feparates the illumined face from the dark one.

Connect the centres of the earth and moon by T L , perpendicular to a plane PLO, paffing through the centre of the moon: that plane will give on the furface of the moon the circle that diftinguikes the vifible hemifphere, or that towards us, from the invifible one, and therefore called the circle of vifon. Whence it appears, that whenever the moon is in A, the circle bounding light and darknefs, and the circle of vifion coincide ; fo that all the illuminated face of the moon will be turned towards the earth : in which cafe the moon is, with refpect to us, full, and fhines the whole night : with refpect. to the fun, fhe is in oppofition; becaufe the fun and moon are then feen in oppofite parts of the heavens, the one rifing when the other fets. But it is to be obferved, that the moon's difc is not perfectly round when the is full, in the higheft or loweft part of her orbit, becaufe we have not a full view of her enlightened fide at the time. When full, in the highelt part of her orbit, a fmall deficiency appears on her lower edge : and the contrary when full in the lowelt part of her orbit.

When the moon arrives at B, the whole illuminated difc M P N is not turned towards the earth; fo that the vifible illumination will be thort of a circle ; and the moon will appear gibbous, as in B.

When the reaches C, where the angle C T S is nearly right, there only one-half of the illumined difc is turned towards the earth, and then we obferve a half moon, as in C ; and fhe is faid to be dichotomized, or bifeced.

In this fituation, the fun and moon are a fourth part of a circle removed from each other; and the moon is faid to be in a quadrate a/peca, or to be in her quadrature.

The moon arriving at D , only a fmall part of the illumined face M P N is turned towards the earth : for which reafon the fmall part that fhines upon us will be feen falcated, or bent inte narrow angles, or horns, as in D .

The inclination of that part of the ecliptic to the horizon, in which the moon is at any time when horned, may be known by the pofition of her horns; for a right line touching their points is perpendicular to the ecliptic. And as the angle, which the moon's orbit makes with the ecliptic, can never raife her above, nor deprefs her below the ecliptic, more than two minutes of a degree, as feen from the fun; it can have no fenfible effect upon the pofition of her horns. Therefore, if a quadrant be held up, fo that one of its edges may be feen to touch the moon's horns, the graduated fide being kept towards the eye, and as far from the eye as it can be converiently held, the arc between the plumb-line and the edge of the quadrant, which feems to touch the moon's horns, will hew the inclination of that part of the ecliptic to the horizon. And the arc, between the other edge of the quadrant and the plumb-line, will thew the inclination of a line touching the moon's horns to the horizon.

At laft, the moon arriving at E, fhews no part of her illumined face at all to the earth, as in E; this pofition we call the new moon, and the is then faid to be in conjunction with the fun; the fun and moon being in the fame point of the ecliptic.

As the moon advances towards F , fhe refumes her horns: and as before the new moon the horns were turned weftward, fo now they change their pofition, and look ealtward: when The comes to G , the is again in a quadrate afpect with the fun; in H the is gibbous; and in A fhe is again full.

Here the are E L, or the angle STL, contained under lines drawn from the centres of the fun and moon to that of the earth, is called the elongation of the moon from the fun: and the arc MO, which is the portion of the illumined circle MON, that is turned towards us, and which is the meafure of the angle that the circle bounding light and darknefs, and the circle of vifion, make with each other, is every where nearly fimilar to the arc of elongation EL L ; or, which is the fame thing, the angle $\mathrm{S} T \mathrm{~L}$ is nearly equal to the angle MLO : as is demonftrated by geometers.

To delineate the Moon's Pbafes for any Time.-Let the circle C O B P (fig. 6.) reprefent the moon's difc turned towards the earth, and let O P be the line in which the femicircle O C P is projected, which fuppofe cut at right angles by the diameter BC ; then making L P the radius, take L F equal to the co-fine of the elongation of the moon; and upon B C, as the greater axis, and L F the lefs, defcribe the femi -ellipfis B F C; this ellipfis will cut off from the moon's difc the portion B F C P, of the illumined face vifible on the earth. In other words, the vifible illumined part varies as F P, the verfed fine of elongation; and we fhall have the vifible illumined part to the whole, as the verfed fine of elongation is to the diameter.

As the mopn illumines the earth by a light reflected from the fun, fo the is reciprocally illumined by the earth, which reflects the fun's rays to the furface of the moon, and that much more abundantly than fhe receives them from the moon. For the furface of the earth is above thirteen times greater than that of the moon; and, therefore, fuppofing the texture of each body alike as to the power of reflecting, the earth mult return thirteen times more light to the moon than the receives from it. In new moons, the illumined fide of the earth is turned fully towards the moon, and will, therefore, at that time, illumine the dark fide of the moon; and then the lunar inhabitants (if fuch there be) will have a full earth, as we, in a fimilar pofition, have a full moon: and hence arifes that dim light obferved in the old and new moons; by which, befides the bright horns, we perceive fomewhat more of her body behind them, though very obfcurely.

It is well known, that when the moon is about three or four days old, the part of her dife which is not enlightened by the fun appears to an obferver, in ferene weather, to be faintly illuminated by light reflected from the earth; and the horns of the enlightened part feem to project beyond the old moon, as if they were part of a fphere confiderably larger in diameter than the unenlightened part. This phenomenon is vulgarly called "the old moon in the new moon's arms." For the explication of this phenomenon, Dr. Jurin, in his "Effay on diftinct and indiftinct Vifion," (Smith's Optics, vol. ii. Rem. p. I13.), fuppofes, that the eye cannot accommodate itfelf, with fufficient diftinctnefs, to view objects at fuch a diftance as the moon. Hence it happens, that the pencils of rays unite before they reach the retina, and form an indifinct and enlarged image of the moon. Nothing can be more demonftrable than this principle; and it may be evinced by the fimple experiment of looking at the figure of the moon cut out of white paper, and placed upon a dark ground; for when this luminous body is covered, either at a diftance too remote, or too near, for perfect vifion, its image upon the retina will be enlarged, and the illuminated part will encroach upon that which is obfcure, and appear to embrace it, in the fame manner as it is feen in the heavens.
That the illuminated portion of the moon's difc, when The is three or four days old, receives its light from the
earth, which will then appear to the lunar inhabitants, like a full moon, is univerfally allowed; and as the age of the' moon increafes, this fecondary light is gradually enfeebled, partly on account of the diminution of the luminous part of the earth, and partly by the increafe of the enlightened part of the moon. This fecondary light, which in favourable circumftances has been oblerved, even when the moon was nine days and fourteen hours oid, has been afcribed by Riccioli, and more lately by profeffor Leflie (Inquiry into the Nature and Propagation of Heat), to the fuppofed phofphorency of the moon. Upon this hypothefis Lellie explains the thread of light, or lucid bow, that feems to connect the two horns of the moon. After emerging from conjunction with the fun, fays this ingenious philofopher, her fharp horns are feen, connected b'y a filver thread, or lucid bow, which completes the circle; and a faint light feems to be fuffufed over the included fpace. This bright arc, however, becomes always lefs vivid; aud before the moon is five or fix days old, it has almoft totally vanifhed. The pale outline of the old moon is commonly afcribed to the reflection, or fecondary illumination upon the earth. But if it were derived from that fource, it would appear denfelt near the centre, and gradually more dilute towards the edge. "I fhould rather refer it," fays our author, " to the fpontaneous light which the moon may continue to emit for fome time after the phofphorefcent fubftance has been excited by the action of the folar beams. The lunar dife is vifible, although completely covered by the fhadow of the earth; nor can this fact be explained by the inflection of the fun's rays in paff. ing through our atmofphere; for why does the rim appear fo brilliant? Any fuch inflection could only produce a diffufe light, obfcurely tinging the boundaries of the lunar orb; and in this cafe the earth, prefenting its dark fide to the moon, would have no power to heighten the effect by reflection. But even when this reflection is greateft about the time of conjunction, its influence feems extremely feeble. The lucid bounding arc is occafioned by the narrow lunula, which, having recently felt the folar impreffion, ftill continues to hine, and, from its extreme obliquity, glows with concentrated effect." Dr. Brewfter, diffatisfied with the profeffor's explanation of the phenomenon above ftated, propofes another, which, in his opinion, is fo fimple and convincing, as to claim an implicit reception. By looking at any map of the moon, which exhibits even a tolerable reprefentation of the lunar furface, we fhall find that the eaftern limb of the moon is feparated from the central parts of her difc by darker regions, and that the luminous portion, comprehended between thefe darker regious and the circular line which bounds her eaftern limb, has actually the form of a bow, which is broadeft towards her fouthern limb, and gradually diminıfhes in breadth towards her northern horn. The immediate caufe, therefore, of the lucid bow is to be fought for in the accidentai circumftance of the moon's eaftern limb being more luminous than the adjacent regions towards the centre. The central parts of the moon, indeed, are equally luminous with her eaftern limb; but their brilliancy is impaired by their proximity to the illuminated portion. It is obvious, that this explanation of the phenomenon may be equally juft, whether the fecondary light of the moon is caufed by phofphorence or by reflection from the earth. Brewfter's edition of Fergufon's Aftronomy, vol. ii. But to return from this digreflion to the farther progrefs of the moon in her orbit.
When the moon comes to be in oppofition to the fun, the earth, feen from the moon, will appear in conjunc-
tion with him, and its dark fide will be turned towards the moon; in which pofition the earth will difappear to the moon as that does to us at the time of the new moon, or in her conjunction with the fun. After this, the lunar inhabitants will fee the earth in an horned figure. In fine, the earth will prefent all the fame phafes to the moon, as the moon does to the earth. But from one-balf of the moon, the earth is never feen at all; from the middle of the other half it is always feen over head, turning round almoft thirty times as quick as the moon does. From the circle which limits our view of the moon, only one-half of the earth's fide next her is feen; the other half hefing hid below the horizon of all places on that circle. To her the earth feems to be the biggeft body in the univerfe ; for it appears thirteen times as big as fhe does to us. As the earth turns round its axis, the feveral continents, feas, and iflands appear to the moon's inhabitants like fo many fpots of different forms and brightnefs, moving over its furface; but much fainter at fome times than others, as our clouds cover or leave them. By thefe fpots, the Lunarians can determine the time of the earth's diurnal motion, jult as we do the motion of the fun; and perhaps they mealure their time by the motion of the earth's fpots; for they cannot have a truer dial.

Dr. Hooke, acconnting for the reaion why the moon's light affords no vifible heat, obferves that the quantity of light, which falls on the hemifphere of the full moon, is rarefied into a fphere 288 times greater in diameter than the moon, before it arrives at us; and, confequently, that the moon's light is 104,368 times weaker than that of the fun. It would, therefore, require 104,368 full mons to give a light and heat equal to that of the fun at noon. The light of the moon, condenfed by the beft inirrors, produces no fenGible heat upon the thermome:er.

Wr. Smith has endeavoured to fhew, it his book an Optics, that the light of the fult moon is but equal to a gogoodth part of the common light of the day, when the fon is bidden by a cloud. For other obfervations on this fubject, fee Lioht.

Moon, Courfe and Motion of the. Though the moon frifhes its courfe in $27^{\text {d }} 7^{\text {l }} 43^{\prime} 5^{\prime \prime}$, which interval we call a periodical month, yet the is longer in pafling from obe conjundion to another; which fpace we call a fynodical month; or a lunation. The reaion is, that while the moon is performing its courfe round the earth in its own orbit, the earth and moon are making their progrefs round the fum; and both are advanced atmoft a whole fign towards the eatt; fo that the poine of the orbit, which in the former pofition was in a right line paffing through the eentres of the earth and fun, is now more welterly than the fon; and, therefore, when the moon is arrived again at that point, it will not yet be feen in conjunction with the fan; nor will the lunation be completed in lefs than 29 days and a half, or $29^{\circ} 12^{\text {h }}$ $44^{\prime} z^{\prime \prime} .8$.

The moon's periodical and fynodical revolution may be fanisiarly reprefented by the motions of the hour and minute hande of a watch peund its dial-plate, which is divided mint : 2 equal parts or hours, as the ecliptic is divided into 12 fignes, and the year into 12 montbs.

Let us fuppofe thefe 12 hours to be 12 figns, the hourhand the fin, and the minute-hand the moon; then the former will go round once in a year, and the latter once in a month; but the moon, or minute-hand, muft go more than reund from any point of the circle where it was laft conjoined with the fun, or four-hand, to overtake it again; for the hour-hand being in motion, can never be overtaken by the minute hand at that point from which they farted at
their laft conjunction. The firlt column of the ninexed table fhews the number of conjunctions which the hour and minute-hand make whilf the hour-hand goes once round the dial-plate; and the other columns thew the times when the two hands meet at each conjundion. Thus, fuppofe the two hands to be in conjunction at XII, as they always are; then, at the firft following conjunation it is 5 minutes 27 feconds 16 thirds 21 fourths 49 fr tifths pall 1 , where they meets at the fecond conjunction it is 10 minutes 54 feconds 32 thirds 43 fourths $3^{8} \frac{1}{2}_{\frac{2}{3}}$ fifths paft II; and fo on. This, though an eafy ilhutration of the motions of the fun and moon, is not precife as to the times of their conjunctions; becaufe, while the fun goes round the echiptic, the moon makes $12 \frac{1}{3}$ conjunctions with him ; but the minute-hand of a watch-or clock makes only 1 I conjmetions with the bourland in one period round the dial-plate. But if, inflead of the common wheel-work at the back of the dial-plate, the axis of the minute-hand had a pinion of 6 leaves turning a wheel of 74 , and this laft zurbing the hour hand, in every revolution it makes round the diat-plate, the minute han it would make $12 \frac{x}{3}$ conjunctions with it; and fo would be a pretty device for thewing the motions of the fun and moon; efpecially as the flowelt moving hand might have a little fun fixed on its point, and the quickeft a lithe moon.

Conj.	$\stackrel{\mathrm{rr}}{\mathrm{r}}$.	M.	27	[4, 16	${ }_{21}{ }_{2}$	v^{15}.
2	II	18	54	32	21	$49 \mathrm{r}{ }^{4}$
3	III	16	21	49	5	${ }_{27}{ }^{3} \mathrm{r}^{3} \mathrm{r}$
4	IV	21	49	5	27	${ }^{6}{ }^{+}{ }^{+} \mathrm{r}$
5	V	27	10	2 r	49	$5{ }_{5}^{5}$
6	VI	32	43	3^{8}	ro	$54 \frac{\%^{7}}{7}$
7	VII	38	10	54	32	43 F \%
8	VIII	43	38	10	54	$33^{\frac{8}{75}}$
9	IX	49	5	27	16	21 ? ${ }^{2}$
10	X	54	32	43	3^{8}	10^{180}
11	XIL	-	-	\bigcirc	-	-

Were the plane of the moon's orbit coincident with the plane of tie ecliptic, i. e. were the earth and moon both moved in the fame plane, the moun's way in the heavens, viewed from the earth, would appear juft the fame with that of the fun ; with this only difference, that the fun would be found to defcribe his circle in the fpace of a year, and the moon her's in a month. But this is not the cale; for the orbits of the two planets cut each other in a right line, paffing through the centre of the earth, and are inclined to each other in an angle of about five degrees eighteen minutes.

Suppofe, e.g. A B (fig. 7.) a portion of the earth's orbit, It the earth, and C E D F the moon's orbit, in which is the centre of the earth; from the fame centre T, in the plane of the ecliptic, defcribe another circle CGDH, whofe femi-diameter is equal to that of the moon's orbit. Now thefe two circles, being in feparate planes, and having the fame centre, will interlect each other in a line DC, pafing through the centre of the earth. Confequentiy, CED; one-talf of the orbit of the moon, will be raifed above the plane of the circle C.GH, towards the north: and D FC, the other half, will be funk below towards the fouth. The right line D C, in which the two circles interfect each other, is called tose line of the nodes, and the points of the angles C and 1 , tbe nodes: of which that where the moon afcends above the planc of the eclipric, northwards, is called the afcenting node, and tbe bead of the dragon; and the other D , the dofrending node, and the dragon's
rail; and the interval of time between the moon's going from the afcending node, and returning to it, a dracontic month.

If the line of the nodes were immoveable, that is, if it had no other motion but that by which it is carried round the fun, it would fill look towards the fame point of the ecliptic ; i.e. it would always keep parallel to itfelf; but it is found by obfervation, that the line of the nodes conftantiy changes place, and fhifts in fituation from eaft to weft, contrary to the order of the figns; and, by a retrograde motion, finifhes its circuit in about nineteen years; in which time each of the nodes returns to that point of the ecliptic whence it before receded.

Hence it follows, that the moon is never precifely in the ectiptic, but twice each period; wiz. when fhe is in the nodes. Throughout the refi of her courfe fhe deviates from it, being nearer or fartler from the ecliptic, as the is nearer or farther from the nodes. In the points F and E the is at her greatelt diftance from the nodes; which points are therefore called her limits of north and fouth latitude.

The moon's ditance from the nodes, or rather from the ecliptic, is called her latifude, which is meafured by an are of a circle drawn through the moon, perpendicular to the ecliptic, and intercepted between the moon and the ecliptic. The moon's latitude, when at the greatef, as in E or F , never exceeds 5 degrees and about i8 minutes; which latitude is the meafure of the angles at the nodes.
it appears by obfervation, that the moon's diftance from the earth is continually changing; and that the is always either drawing nearer, or going farther from us. The reafon is, that the moon does not move in a circular orbit, which has the earth for its centre ; but in an elliptic orbit (as reprefented in fis. 8.), one of whore foci is the centre of the earth: A P reprefents the greater axis of the ellipfis, and the line of the apfides; and T C the excentricity ; the point A, which is the bighelt aptis, is called the aporee of the moon; and P , the lower aphis, is the moon's perigee, or the point in which fhe comes nearelt the earth.

Befides, there is reafon to befieve, that the moon is fomewhat nearer the earth now than the was formerly; her periodical month being fhorter than it was in former ages. For our altronomical tables, which in the prefent age fhew the time of folar and lunar eclipfes to great precilion, do not anfwer fo well for ancient esfipies.

The fpace of time in which the moon, going from the apogee, returns to it again, is called the anomalific month.
If the moon's orbit bad no other motion but that with which it is carried round the fun, it would ftill retain a pofition parallel to itfelf, and always point the fame way, and be obferved in the fame point of the ecliptic; but the line of the apfides is likewife obferved to be moveable, and to have an angular motion round the earh, from weft to eaft, according to the order of the figns, returning to the fame fituation in the fpace of about nine years.

The irregularities of the moon's motion, and that of her orbit, are very confiderable. For, I. Whels the earth is in her aphelion, the moon is in her aphelion tikewife; in which cafe the quickens her pace, and performs her circuit in a fhorter time : on the contrary, when the earth is in its perihelion, the moon is fo too, and then fhe flackens her motion: and thus fhe revolves round the earth, in a fhorter fpace, when the earth is in her aphelion than when in her peribehon; fo that the periodical months are not all equal.
2. When the moon is in her fyzygies, i. e. in the line that joins the centres of the earth and fun, which is either in her
conjunction or oppofition, fhe moves fwifter, ceteris paribus, than when in the quadratures.
3. According to the different diftances of the moon fromthe fyrygies, i.e. frem oppofition to conjunction, the changes her motion: in the firlt quarter, that in , from the comjunction to her firt quadrature, fhe abates fomewhat of het velocity; which in the fecond quarter fhe recovers; in the third quarter fite again loles; and in the laft fhe again recovers. Hence the areas defcribed are accelerated and retarded; and the mean place differs from the true. This inequality was firt difcovered by Tycho Brahe, who called it the moon's variation. At different diftances of the earth from the fun, the difturbing forces vary, and, therefore, the equation, called the "variation," being firlt calculated for the mean diftance of the earth from the fun, will be fubject to a variation from the variation of that difance; and hence fome new equations will arife.
4. The moon moves in an ellipins, one of whofe foci is in the centre of the earth, roand which fhe deferibes areas proportionable to the times, as the primary planets do round the fan; whence the motion in her perigee mult be quickeft, and it mult be flowelt in the apogee.
5. The very orbit of the moon is changeable, and does not always preferve the fame figure; its excentricity being fometimes increa\{ed, and fometimes diminifhed: it is greateft, when the line of the apfides coincides with that of the fyzygies; and leaft, when the line of the apfides cuts the other at right angles.

The moon's orbit being dilated or contracted as the earth appreaches to or recedes from the fun, its motion will accordingly be diminifhed or increafed; and hence arifes an annual equation, affigning the difference between the mean motion at the mean difance of the earth from the fun, and the mean motion at any other diftance of the fun. The variation depending on the true diftance of the fun from the moon, will produce feveral other equations, arifing from the different corrections that are made. The change of the excentricity caufes a change of the equation of the centre, called the evelion, and hence new equations mult be applied. See thefe terms refpectively and Excentricity.
6. Nor is the apogee of the moon without an irregularity; being found to move forward, when it coincides with the line of the \{yaygies; and backward, when it cuts that line at right angles. Nor are this progrefs and regrefs in any meafure equal ; in the conjunction or oppolition, it goes briflely forward; and in the quadratures it moves either nowly forward, fands fill, or goes backwards. Upon the whole, however, the motion of the apogee is progreflive. Hence arifes an equation of the motion of the apogee, which depends upon its difance from the fun; and there is alfo a fmaller annual equation, arifing from the difturbing forces being different at different times of the year.
7. The motion of the nodes is not uniform; but when the line of the nodes coincides with that of the fyzygies at right angles, they go backwand, from ealt to weft; and this, fir lraac Newton fhews, is at the rate of $16^{\prime \prime} 19^{\prime \prime \prime}$ $24^{\text {tif }}$ in an hour. See the preceding part of this article, and Nones.

The only equable motion the moon has, is that with which fhe turns round her axis exactly in the fame fpace of time in which fhe revolves round us in her orbit; whence it happens, that fhe always turns the fame face towards us.

For as the moon's motion round its axis is equal, and yet its motion, of velocity, in its orbit, is anequal, it follows, that when the moon is in its perigee, where it moves fwiftef in its orbit, that part of ita furface, which, on account of
its motion in the orbit, would be turned from the earth, is not fo entirely; by reafon of its motion round its axis. Thus fome parts in the limb or margin of the moon, fometimes recede from the centre of the difc, and fometimes approach towards it; and fome parts, that were before invifible, become confpicuous; which is called the moon's $l i$ bration.

Yet this equability of rotation occafions an apparent irregularity; for the axis of the moon not being perpendicular to the plane of her orbit, but a little inclined to it ; and this axis, maintaining its parallelifm, in its motion round the earth; it mult neceffarily change its fituation, in refpect of t an obferver on the earth; to whom fometimes the one, and fometimes the other pole of the moon becomes vifible; whence it appears to have a kind of wavering, or vacillation. See Libration.

The irregularities above enumerated, and fome others of a fimilar kind, have been urged as objections to the Nextonian theory of gravity, though they were anticipated by the il. luftrious author, who not only evinced their confiftency with it, Sut fuggefted the explication of them which might be deduced from that theory, properly underftood and applied. Sir Ifaac Newton having found, in the manner which we fhall prefently explain, that the moon was retained in its orbit by a force, which, at different diftances from the earth, varied inverfely as the fquares of the diftances, and concluding from analogy that the fame law of attraction might take place between all the bodies in the fyftem, applied this theory to compute the effect of the fun's attraction upon the earth and moon, fo far as it might affect the relative fituation of the latter as feen from the former; and hence he difcovered, befides the irregularities already mentioned, other fmaller inequalities of the moon's motion, which were alfo found to agree with obfervations. From this, and other applicationsof his theory, he was confirmed in his conjectures concerning the principle of univerfal gravitation ; and the farther inveftigation of the fame principle, and the difcovery that it produced conclufions conformable to obfervation, ferved firmly to eftablifh his theory.' M. Clairaut, indeed, in the year 1747, publithed a memoir which was read before the Academy of Sciences at Paris, and urged as an objection againft it, that it would not account for the motion of the moon's apogee, but that this motion, deduced from it by his calculations, was only one-half of what it was found to be by obfervations. But foon after difcovering his miftake, and poffeffing candour enough to acknowledge it, he was the firft who gave a complete theory of the moon, in which he fhewed that fir I. Newton's law of gravity would not only account for the motion of the moon's apogee, but alfo for all the other irregularities of the moon. M. Euler alfo retracted his own erroneus opinion, in deference to the judgment of M . Clairaut; and concurs with him in doing ample juftice to the Newtonian theory. "After moft tedious calculations," fays Euler, "I have at length found, to my fatisfaction, that M. Clairaut was in the right, and that this theory is entirely fufficient to explain the motion of the apogee of the moon. As this enquiry is of the greateft difficulty, and as thofe, who hitherto pretended to have proved this nice agreement of the theory with the truth, have been much deceived, it is to M . Clairaut that we are obliged for this important difcovery, which gives quite a new luftre to the theory of the Great Newfon; and it is but now that we can expect good aftronomical tables of the moon." Others, and particularly Mr. Machin and M. Frife, have profecuted a fimilar inveftigation of this theory, and contributed to eftablifh it. What Euler led aftronomers to expect, they have now actually obtained
in Mayer's tables, as corrected by Dr. Mafkelyne, which, founded upon a very elegant theory conformable to obfervations, are the moft correct, and do not err more than half a minute in longitude. See Longitude and Luvar Obfervations.

Moon's Motions, Phyfical Caufe of the. The moon, we have obferved, moves round the earth by the fame laws, and in the fame manner, as the earth and other planets move round the fun. The folution, therefore, of the lunar motions, in general, comes under thofe of the earth and other planets.

As for the particular irregularities in the moon's motion, to which the earth, and other planets, are not fubject, they arife from the fun, which acts on, and difturbs her in her ordinary courfe through her orbit; and are all mechanically deducible from the fame great law by which her general motion is directed; viz. the law of gravitation and àtradion.

Other fecondary planets, v. g. the fatellites of Jupiter and Saturn, are, doubtlefs, fubject to the like irregularities with the moon; as being expofed to the fame perturbating or ditturbing force of the fun; but their diftance fecures them from our obfervation.

The laws of the feveral irregularities in the fyzygies, quadratures, \&c. fee under Syzygies, Quadratures ${ }_{r}$ \& c.

It would not be confiftent with the limits or nature of this work to inveltigate, by tedious and elaborate proceffes of an analytical and geometrical kind, the various equations that have been explored for the illuftration of thefe laws, and for furnifhing a complete theory of the moon. Much has been done in this way by feveral learned mathematicians, and of late by profeffor Vince, who is eminently qualified for the undertaking : and we fhall therefore refer the reader, who may be defirous of farther information, and who has no accefs to a variety of other publications, to the fecond volume of Vince's Complete Syftem of Aftronomy, chap. xxxii.

We fhall, however, in this place, introduce a general view of the Newtonian theory of gravity, as it is applied to the folution of the irregularities of the moon's motion.

We have already, under the article Gravitation, illuf. trated and confirmed the Newtonian theory of gravity, as it regards the moon and the other planets; but as the fubject is of importance, and as it is immediately connected with what follows, we fhall here give a concife fatement of the leading fact by which the identity of the centripetal force, as it refpects the moon, and that of gravity, was originally explained and eftablifhed, referring for a more detailed account to the article juft cited.

It is well known, and univerfally allowed, that the planets are retained in their orbits by fome power which is continually acting upon them ; that this power is directed towards the centres of their orbits; that the efficacy of this power increafes upon an approach to the centre, and diminifhes by its recefs from the fame; and that it increafes according to a certain law, viz. that of the fquares of the diftances, as the diftance diminithes; and that diminifhes in the fame manner as the diftance increafes. Now by comparing this centripetal force of the planets with the force of gravity on earth, they will be found perfectly alike. This we fhall illuftrate in the cafe of the moon, the nearef to us of all the planets. The rectilinear fpaces defcribed in any given time by a falling body, urged by any powers, reckoning from the beginning of its defcent, are proportionable to thofe powers. Confequently the centripetal force of the moon, revolving in its orbit, will be to the force of gravity on the furface of the earth, as the fpace
fipace which the moon would defcribe in falling any litrle time, by ber centripetal force towards the earth, if the had no circular motion at all, to the face which a body near the earth would defcribe in falling, by its gravity towards the fame. By a very ealy and obvious calculation of thefe two fpaces it will appear, that the firlt of chem is to the fecond, i, e. the centripetal force of the moon revalving in her orbit is to the force of gravity on the furface of the earth, as the fquare of the earth's femidiameter to the fquare of the femidiameter of her orbit, which is the fame ratio as that of the moon's centripetal force ia her orbit to the fame force near the furface of the earth. 'The moon's centripetal force is, therefore, equal to the force of gravity. Thefe forces, confequently, are not different, but they are one and the fame; for if they ware different, bodies akted upon by the two powers conjointly, would fall towards the earth with a velocity double to that arifing from the fole power of gravity. It is evident, therefore, that the moon's centripetal force, by which the is retained in her orbit, and prevented froin ruring off in tangents, is the very power of gravity of the earth, extended thither. This reafoning may be farther illuatrated and confirmed in the following manner. Let R A E (Plate XVII. Afronomy, fig. g.) reprefen: the earth, T' its centre, V L the orbit of the moon, and L C a part of it deleribed by the moon in a minute, which is equal to $-\frac{1}{3}$, of the whole periphery, or 33 feconds of a degree ; begaufe the moon completes her whole courfe in 27 days, feven hours, 43 mi nutes, or in $393+3$ minutes. Moreover, the circumference of the esrth, according to M. Picart's menfuration, is 1232.96500 Paris feet, and therefore ifs femidiameter ' 1 ' A $=19615800$ feet ; and T L , the femidiameter of the moon's orbit, will be 1176948000 feet, oi $=60$ times ' I ' A; and the verfed fine $L D$ of the are $L C=33^{\prime \prime}$, computed by measis of tables, or BC, will be $55_{t_{2}^{\prime}}$ feer, nearly : or L D may be fund without tables thus; the whole circumference of the moon's orbit, or 60×123249600, is equal :o 7394976000 , which divided by 39343 , will give the are $\mathrm{LC}=187961$ feet; but by a well-known theorem in geometry, fuppoling the are L C, which is a very fmall part of the moon's orbit, to be rectilinear, $L^{-}=1 \mathrm{D} \times$ ${ }_{2} \mathrm{LT}$, i. c. $\mathrm{L} \mathrm{D}=\frac{\mathrm{L} \mathrm{C}^{1}}{2 \mathrm{~L} \mathrm{~T}}$, or the iquare of 187961 , which is 35329337521 , divided by 2353896000 , will give 15.013 , \& c. It may be there obferved, that a dillance of the moon iomewhat greatcr than to times the diameter of the earth would afford a more exact refult ; and the force by which the noon is rettramed in its orbit mould alfo he increafed in the proportion of 577_{i}^{2} to $778 \frac{29}{2}$, in order to have the exact centripetal force of the moon, fueh as it would be undiminifhed by the action of the fun, and with this corsection the above number $15 . \mathrm{er}_{3}$, \& c . will become 15.097 , \& c. or $15 \mathrm{~T}^{\mathrm{I}} \mathrm{t}$ very nearly. (See Newtor's Principia, lib. i. prop. 45 . cor. 2. and lib. tii. prop. 3.) In cither way of calculation it appears that the force, by which the moon is drawn off from the tangent $L B$, or retained in its orbit, impels it towards the centre of the earth about $15 r^{\frac{1}{2}}$ Paris feet in one minute: but this force, being known from the elliptic figure of her orbit to be reciprocally proportional to the fquare of the ciftance, would impel the mon, fuppoled to be at the furface of the earth, through a pace equal to $60 \times 60 \times 1$, feet in one minute. But bodiss, impelled by the force of gravity, fall near the furface of the earth through the face of I $5_{1}{ }^{1}$ Paris feet in one fecond, and the fpaces being as the fyuares of the times, through $60 \times 60 \times 5{ }^{\frac{1}{2}}$ in a minute. Confequently, as the force by which the moon is retained in its orbit, and the force of gravity, produce the fame effects in Vol. XXIV.
the fame circumftances, and tend towards the fame point, they are the fame forces. The moon, therefore, gravitates towards the earth, and the earth reciprocally towards the moon; and this law is further contirmed by the phenomena of the tides. See Tines.
The like reafoning might be applied to the other planets. For, as the revolutions of the primary planets round the fun, and thofe of the fatellites of Jupiter, Sa:urn, and the Georgium Sidus, round their primaries, are phenomena of the fame kind as the revolution of the moon round the earth ; as the centripetal powers of the primary are directed towards the centre of the fun, and thofe of the fatellited towards the centres of their primaries; and, lathy, as all thefe powers are reciprocally as the fquares of the diltances from the centres; it may fafely be concluded, that the power and caufe are the fame in all. Therefore, as the moon gravitaies towards the earth, and the earth towards the moon, fo do all the fecondaries to their relpective primaries; the primarics to their fecondaries; and fo do, alfo, the primaries to the fun, and the fun to the primaties, se. Newton's Princ. lib. iii. prop. 4, 5, 6. Gregory's Aif. lib. i. §. 7 . prop. 46 and 47 .

In folving the irregularities of the moon's metion, agres.. ably to the theory of gravity, previoufly eltabliffed, it muit firft be conidered, that if the fur acted equally on the earth and moon, and always in parallei hives, this action would ferve only to reitrain them in their annual motions round the fun, and no way affect their actions on each oither, or their motions about their common centre of gravity. But becaufe the moon is nearer the fun, in one half of her orbit, than the earth is, and farther in the other half of her orbit, and the power of gravity is always greater at a lefs diltance, it follows, that, in one half of her orbit the moon is more aitracted than the earth towards the f:an, and in the other half iefs attracted than the carth: and henceirregnlarities neceflarily arife in the motions of the moon; the excefs, in the firit cafe, and the defect, in the fecond, of the attration, becoming a force that dilturbs her motion: and betides, the action of the fun on the earth and moon, is not directed in parallel lines, but in lines that meet in the centre of the fur.

In orcer to underitand the effects of thefe powers, let us fuppofe that the projectile motions of the earth and moon were deftroyed, and that they were allowed to fall freely towards the fun. If the moon was in conjunction with the lun, or in that part of her orbit which is nearelt to him, the moon would be more attracted than the earth, and fall with greater velocity towards the fun; fo that the diftance of the monn from the earth would be increafed in the fall. If the moon was in oppolition, or in the part of her orbit which is fartheft from the fun, the would be lefs attracted than the earth by the fun, and would fall with.lefs veiccit towards the fun tban the earth, and the moon would be left behind by the earth; fo that the diftance of the moon from the earch would be increafed, in this cafe alfo. If the moon was in one of the quarters, then the earth and moon beigg both attracted towards the centre of the fun, they would both directly, defcend towards that centre, and, by approaching to the fame centre, they would neceflarily approach at the fame time to each other, and their diftance from one another would be diminifhed, in this cafe. Now, wherever the action of the fun wosid increafe their diflance, if they were allowed to fall towards the fon, there we may be fure the fun's action, by endeavouring to feparate them, diminithes their gravity to each other; wherever the action of the fun would diminith their diltance, there the fun's action, by endeavouring to make them appreach to one
one another; increales their gravity to each cther: that is, in the conjunction and oppontion, theit gravity towards each other is diminithed by the action of the fun; buc in the two quarters it is increaled by the action of the fim. To prevent mitaking this matrer, it mult be remembered, it is not the total aetion of the fon on them that difurbs their motions, it is only that part of its action, by which it tends to feparate them, in the frift cafe, to a greater diftance from cach other; and that part of its action, by which it tends to bring them nearer to each other, in the fecond cafe, that has any effect on their motions, with refyect to each other. The other, and the far more confiderable part, has no other effect but to retain them in their anmual courfe, which they perform together about the fun.

In confidering, therefore, the effects of the fun's action on the motions of the earth and moon, with refpect to each other, we need only attend to the excefs of its action on the moon above its action on the earth, in their conjunction; and we mult confider this excefs as drawing the moon from the earth towards the fun in that place. In the oppofition, we need only confider the excefs of the action of the finn, on the earth, above its action on the moon, and we mult conider this excefs as drawing the moon from the earth, in this place, in a dixection oppofite to the former, that is, towards the place oppofite to where the fun is; becaufe we confider the earth as quiefcent, and refer the motion, and all its irregularities to the moon. In the quaters, we condider the actions of the fun as adding fomething to the gravity of the moon towards the earth.

Suppofe the moon fetting ofit from the quarter that precedes the conjunction, with a velocity that would make her deferibe an exact circle round the earth, if the fun's action had no effect on her; and becaufe her gravity is increafed by that action, fhe mult defcend towards the earth, and move within that circie: her orbit, there, will be more carve than otherwife it would have been; becanfe this addition to her gravity will make her fall farther at the end of an arc below the tangent drawn at the other end of it; her motion will be accelerated by it, and will continue to Be acce'erated, till the arrives at the enfuing conjunction; becaufe the direction of the action of the fun upon her, during that time, makes an acute angle with the direction of her motion. At the conjunction, her gravity towards the earth being diminifhed by the action of the fun, her orbit will be lefs curve there for that reafon; and he will be carried farther from the earth, as fhe moves to the next quarter; and becaufe the action of the fun makes then an obtufe angle with the direction of her motion, fhe will be retarded by the fame degrees by which the was accelerated before.

Thus fise will defcend a little towards the earth, as the moves from the firft quarter towards the conjunction, and afcend from it, as he moves from the conjunetion to the next quarter. The a\&kion which ditturbs her motion will have a like, and almolt equal effect upon her, white the moves in the other half of her orbit, that is, that half of it which is fartheit from the fun: the will proceed from the quarter that follows the conjunction with an accelerated motion to the oppolition, approaching a little towards the earth, becaufe of the addition made to her gravity, at that quarter, from the action of the fon; and receding from it again, at fhe goes on fruan the oppofition to the quarter, from which we fuppofed her to let out: The areas defcribed in equal times, by a ray drawn from the moon to the earth, will not be equal, but will be accelerated by the confpiring action of the fun, as the moves towards the conjuaction or oppofition from the quarters that precede thems
and will be retarded by the fame ation, as fhe moves from the conjunction or oppofition to the quarters that fucceed them. Newton has computed the quantities of thefe irregularities from their caufes. He finds, that the force added to the gravity of the moon, in her quarters, is to the gravity with which fhe would revolve in a circle about the earth, at her prefent mean dillance, if the fun had no effect on her, as I to $178 \frac{29}{40}$. He finds the force fubducted from her gravity, in the conjunctions and oppofitions, to be double of this quantity, and the area defcribed in a given time in the quarters, to be to the area defcribed in the fame time in the conjunctions and oppofitions, as 10973 to 11073 . He finds, that in fuch an orbit, her diffance from the earth in her quarters, - would be to her ditance in the conjunctions and oppofitions, as 70 to 69 . This is the variation of the form of the orbic arifing from the force of the fun, fuppofing that the orbit would have been a circle without that difturbing force. And as the orbit of the moon is an ellipfe, having the earth in its focus, and approaching nearly to a circle, the fame caufe mult produce very nearly the fame effeg in the moon's orbit. Dr. Halley firf tool notice of this contraction of the lanar orbit in fyzygies, from the phenomena of the moon's motion, and made the ratio of the diameter as $44.5: 45.5$, from obfervation.

From the alteration of the form of the orbit and fromthe acceleration of the areas, there will arifc two corrections to be applied to the mean motion of the moon, in order to give the true motion; and the joint effect of thefe two conftitutes an equation, called the "variation."

As to the effect of the action of the fun on the nodes, and, confequently, on the inclination of the moon's orbit to the ecliptic, fee Noobs, and the preceding part of this article.
Moreover, the action of the fun diminifhes the gravity of the moon towards the earth, in the corjunctions and oppoltrions, more than it adds to it in the quarters, and, by diminining the force, whech retains the moon in her orbit, increafes her diftance from the earth and her periodic time: and becaufe the earth atod moon are nearer the fun in their peribelion than in their aphelion, and the fun acts with as greater force there, fo as to fubduct more form the moon's gravity towards the earth; it follows, that the moon muft revolve at a greater diftance, and take a longer time tofinifh her revolution in the perthelion of the earth, when her orbit is dilated, and the moves flower, than in the aphelion, when the moon's orbit is contracted, and fhe moves fafter. The annual equation, by which this inequality is compenfated, is nothing in aphelion and perihehon; and at the mean diftance of the fun it is $12^{\prime} 55^{\prime \prime}$, according to profeffor Vince's determination. Sir liaac Newton makes it $1 \mathrm{I}^{\prime} 5^{\prime \prime}$: according to Mayer, it is I' $^{\prime} 1^{\prime \prime}:$. M, d'Alembert makes it $12^{\prime} 57^{\prime \prime}$: Halley makes it about 13^{\prime} : according to M. de la Lande, it is in $8^{\prime \prime} .6$; and this alfo is conformable to obfervation.

There is another remarkable irregularity in the moon's motion, that alfo arifes from the action of the fuas: which, is the progreffive motion of the- aplides. The moon defcribes an elliple about the centre of the earth, having one of the foci in that centre. Her greateft and leaf diftances. from the earth are in the apfides, or extremities. of the longer axis of the ellipfe. This is not found to point al. ways to the fame place in the heavens, but to move with a. progreffive motion forwards, fo as to finifh a revolution round the earth's centre in about nine years.

To underftand the reafon of this motion of the apfides, we maft conlider, that, if the gravity of a body decreafed lefs as the diftance-increafes, then according to the regular
courle of gravity, the body would defcend fooner from the higher to the lower apfis, than in half a revolution; and therefore the apis would recede in that cale, for it would move io a contrary direction to the motion of the body, meeting it in its motion. But if the gravity of the body fhould deareafe more, as the diftance increafes, than according to the regular courfe of gravity, that is, in a higher proportion than as the fquare of the ditance increafes, the body would take more than half a revolution to move from the higher to the lower apfis; and, therefore, in that cafe, the aplides would have a progreflive motion in the fame direction as the body.

In the quarters, the fun's action adds to the gravicy of the moon, and the force it adds is greater, as the dittance of the moon from the earth is greater; fo that the action of the fon hindurs her gravity towards the earth from decreafing as much while the diftance increafes, as it ought to do according to the regular courle of gravity; and, therefore, while the moon is in the quarters, her aplides muft recede. In the conjunction and oppofition, the action of the fun fubducts from the gravity of the moon towards the earth, and fubducts the more the greater her diftance from the earth is, fo as to make her gravity decreale more as her diltance increafes, than according to the regular courfe of gravity; and, therefore, in this cafe, the apfides are in a progrellive motion. Becaufe the altion of the fun fubducts more in the conjunctions and oppofitions from her gravity, than it adds to it in the quazters, and, in general, diminifhes more than it augments her gravity; heice it is that the progreffive motion of the apfides exceeds the retrograde motion; and, therefore, the apfides are carried round according to the order of the figns. The annual equation of the apfides, aecording to Gr Iface Newton, is $19^{\prime} 43^{\prime \prime}$. See Maclaurin's Account of fir Ifaac Newton's Phil. Difc. lib. iv. c. 4. We have fome obfervations and tables concerning the moon's motion, by Mr. Richard Dunthorn, in the Philofophical Tranfactions, $N^{0} 482$. fect. 13, where he gives roo oblerved longitudes of the moon compared with the tables, viz. $2 ;$ ecliples of the moon, taken (except the firt) from Flamiteed's Hittoria Coeleftis, the Philofophical Tranfactions, and the Memoirs of the R:yal Academy of Sciences; the two great ecliples of the fun in $x 706$ and $1715 ; 25$ felect places of the monn, from Flamteed's Hitoria Coletlis; and 48 of thofe longitudes of the moon, coniputed from Flamiteed's Obfervations by Dr. Halley, and printed in the frit edition of the Hiltoria Ctee eftis.

Theory of the Moon's Motions and Irregularities.-. The tables of equation, which ferve to folve the irregularities of the fun', do likewife ferve for thofe of the moon.
But then thefe equations mult be corrected for the moon, otherwife they will not exnibit the true motions in the fyzygies. The merhod is thus: Suppore the moon's place in the zodiac, required in longitude, for any given time ; hore, we firt find, in the tabies, the place where it would be, fuppoing its motion unform, which we call mean, and which is fometimes falter, and fometimes flower, than the, true motion: the?, to find where the true motion will place her, which is alio the apparent, we are to find in another table at what diftance it is from its apogee; for, according to this diftance, the difference between her true and mean motion, and the two places which correfpond thereto, is the greater. The true place thus found, is not yet the true place; but varies from it, as the moon is more or lefs remote both from the fun, and the fun's apogee: which variation refpecting, at the fame time, thofe two different diftances, they are to be both confidered and combined together,
as in a table apart. Which table gives the correction to be made of the true places firt found That place, thus cor. rected, is not yet the true place, unlefs the moon be either in conjunction, or oppofition: if the be out of thele, there muft be another correction, which depends on two things taken together, and compared, viz. the diftance of the moon's corrected place from the fun; and of that at which The is with regard to her own apogee; this lat diftance having been changed by the firft correction.

By all thefe operations and corrections, we at length arrive at the moon's true place for that inftant. In this, it mut be owned, there occur prodigious difficulties : the lunar equalities are fomany, that it was in vain the aftronomers laboured to bring them under any rule, before the great fir Yaac Newton; to whom we are indebted both for the mechanical caules of thefe inequalities, and for the method of computing and afcertaining them: fo that be has given tis a world, in a great meafure, of his own difcovering, or rather fubutuing.

From the theory of gravity he fhew's, that the larger planets, revolving round the fun, may carry along with them imaller planets, revoluing round themfeives ; and hews alfo, à priori, that thefe fmaller muft move in ellipfes having their umbilici in the centres of the larger; and mutt have their motion in their orbits varioufly difturbed by the motion of the fun; and in a word, mutl be affected with thofe inequalities which we actually obferve in the moon. Ard from this theory, he argues analogous irregularities in the fatellites of Saturn.

From the fame theory be examines the force which the fun has to diflurb the mon's motion, defermines the horary increafe of the area which the moon would defcribe in a circular orbit by radii drawn to the earth-her dif. tance from the earth-the horary motion in a circular and elliptic orbit-the mean motion of the nodes-the true mo. tion of the nodes-the horary variation of the inclination of the moon's orbit to the plane of the ecliptic. Laftly, from the fame theory he has found the amnal equation of the moon's mean motion to arife from the various dilatation of her orbit; and that variation to arife from the fun's force, which being greater in the perigee, dillends the orbit; and, being lefs in the apugee, fuffers it to be again contracted. In the dilating orbic the moves more fowly; in the contracted, more fwiftly ; and the annual equation, whereby this inequality is compenfated, in the apogee and perigee, is nothing at all; at a moderate diftance from the fun, it amounts to $\mathrm{In}^{\prime} ; \mathrm{ol}^{\prime \prime}$; and in other places it is proportional to the equation of the fun's centre, and is added to the mean motion of the moon, when the earth proceeds from its aplielion to its perihelion; and fubiracted when in the oppolite part.

Thus, fuppofing the radius of the orbis marnus 1000 , and the earth's excentricty 16 ; this equation, when greateft, according to the theory of gravity, comes out i $1^{\prime} 49^{\prime \prime}$.

He adds, that in the earth's perihelion, the nodes move fwifter chan in the aphelion, a do that in a triplicate ratio of the earth's duttance from the fun, inveriely. Whence arife anual equations of their motons, proportionable to that of the centre of the lun: Now the fun's motion is in a dupli. cate ratio of the easth's diftance from the fun inverfely, and the greateft equation of the centre which this incquality occations, is $1^{\prime} 5^{6} 26^{\prime \prime}$, agreeable to the fun's excentricity 16ts. If the fun's motion were in a triplicate ratio of its dillance inverfely, this inequality would generate the greateft equation $2^{3} 569$ "; and therefore the greateft equations which the inequanties of the motions of the moon's apogee

$$
I_{2} \text { and }
$$

and nodes occafion, are to $2^{\circ} 5^{6} 9^{\prime \prime}$, as the mean diurnai motion of the moon's apogee, and the mean diurnal motion of her nodes, are to the mean diurnal motion of the fun. Whence the greatelt equation of the mean motion of the apogee comes out $19^{\prime} 4^{\prime \prime \prime}$; and the greatelt equation of the mean motion of the nodes $9^{\prime} 27^{\prime \prime}$. The former equation is added, and the latter fubtracted, when the earth proceeds from ite perihelion to its aphelion, and the contrary in the oppofite part of its orbit.

From the fame theory of gravity, it alfo appears that the fun's action on the moon muft be formewhat greater when the tranfuerfe diameter of the lunar orbit palfes througlt the fun, than when it is at right angles with the line that joins the earth and fun; and, therefore, that the lunar orbit is fomewhat greater in the firit cafe than in the fecond. Hence arifes another equation of the mean lunar motion, depending on the fituation of the moon's apogee with regaud to the fun, which is greateft when the moon's apogee is in an octant with the fun; and none, when fhe arrives at the quadrature, or fyzygies; and is added to the mean motion, in the paflage of the moon's apogee from the quadrature to the fyzygies, and fubtracted in the paffage of the apogee from the fyzygies to the quadrature.

This equation, which fir Iface calls femefris, when greaten, viz. in the octants of the apogee, rifes to $3^{\prime} 45^{\prime \prime}$, at a mean diftance of the earth from the fun; but it increafes and diminifhes in a triplicate ratio of the fun's difance inverfely ; and therefure, in the fun's greateft difance, is $3^{\prime} 34^{\prime \prime}$; in the fmalleft, $3^{\prime} 56^{\prime \prime}$, nearly. But when the anogee of the moon is without the octants, it becomes lefs, and is to the grearef equation, as the fine of double the difta:ce of the moon's apugee from the next fyzygy, or quadrature, to the radius.

From the fane theory of gravity it follows, that the fun's action on the moon is fomewhat greater when a right line, drawn through the moon's nodes, pailes through the fun, than when that line is at right angles with another joining the Iun and earth : and hence ariles another equation of the moon's mean motion, which he calls fecunda feneffris, and which is greatef when the nodes are in the fun's octants, and vanithes when they are in the fyzygies, or guadratures; and in other fituations of the nodes, is propertionable to the fine of double the diftances of either node from the next fyzygy, or quadrature.

It is added to the moon's mean motion while the nodes are in their paffage from the fun's quadratures to the next fyzygy, and fubtracted in their paflage from the fyzygies to the quadratures in the octants.

When it is greateft, it amounts to $47^{\prime \prime}$, at a mean diftance of the earth from the funt as it appears from the theory of gravity; at other diftances of the fun, this equation in the octants of the nodes is reciprocally as the cube of tne fun's difance from the carth; and therefore in the fun's perigee is $45^{\prime \prime}$; in his apogee nearly $49^{\prime \prime}$.

By the fame theory of gravity the moon's apogee proceeds the falteft when either in conjunction with the fun, or in oppoftion to it ; and is retrograde when in quadrature with the fun. In the former gafe, the excentricity is greatef, and in the latter frallet. Thefe inequalities are very con fiderable, and generate the principal equation of the apogee, which he calls femeflis, or femimenfirual. The greatelt femimentrual equatinn is about 12° : 8°.

Horrox firlt obferved the moon to revolve in an ellipfos round the earth plared in the lower umbilicus: and Halley placed the centre of the ellipfis in an epicycle, whofe centre revolves uniformly about the earth: and from the motion in the epicycle arife the inequalities now obferved in the
progrefs and regrefs of the apogee, and the quantity of the excentricity.

Suppole the nean ditance of the monn from the earth divided into 100,000 ; and let T (Plate XVII. AfBronomy, fig. I2.) reprefent the earth, and TC the mean excentricity of the moon $5 ; 05$ parts ; produce TC to B , that CB may be the line of the greateft femimenfrual equation $12^{\prime \prime} 18$, to the radius T C ; the circle BD A, defcribed on the centre C_{3} with the interval $\mathrm{C} D$, will be the cpicycle wherein the centre of the lunar orb is piaced, and vinerein it revolves according to the order of the letters BD A. Take the angle BCD equal to double the a:nual arapinent, or double the difance of the true place of the frn from the moon's ápogee once cquated, and C TD wiil be the ferninenftrual equation of the moon's apoget ; and T1 1 the excontricity of its orbit tending to the apogee equated a fecond time. From heace the moon's mean motion, apogee, and excentricity, as alfo the freater axis of is orbit 200,000 , the moon's true place, as allo her diftance from the carth, are found, and that by the moft common methods. In the earth's peritielion, by reaton of the greater force of the fun, the centre of the moon's orbit will move more fiwifily about the centre C than in the aphelion, and that in a timhcate ratio of the earth's diflance from the fon merfely: By reafon of the equation of the centre of the fi:a, comprehended in the annual argument, the centre of the moon's orbit will move more fiviftly in the epicyele D D A , in a duplicate ratio of the diftance of the earth from she fan inverfely.

That the tame may ftill move more fwifly in a fimple ratio of the diflance inverfely from the centre of the orbit $1 D$, draw $D E$ towards the moon's apogee, or parailel to TC ; and take the angle E DC equal to the excefs of the annual argument, above the diftance of the moon's apogee from the fun's perigee in confequentia; or, which is the fame thang, take the angle CDF equal to the compement of the true anomaly of the fun to 360°; and let DF be to DC as double the excentricity of the orbis magnus to the mean diftance of the fun from the earth, and the mean diumal motion of the fun from the moon's apogee, to the mean diurnal motion of the fun from it own apogee, conjunctly, i.e, as 33° is to 1000 , and $52^{\prime} 27^{\prime \prime} 16^{\prime \prime}$ to $59^{\prime} 8^{\prime \prime} 10^{\prime \prime \prime}$, conjunctly; of as 3 to 100. Conceive the centre of the moon's orbit placed in the point F, and to revolve in an epicycle, whofe centre is D , and its radius DF , while the point D proceeds in the circumference of the circle DABD : thus the velocity, with which the centre of the moon's o:bit moves in a certain curve, defribed about the centre \mathbf{C}, will be reciprocally as the cube of the fun's diftance from the earth.

The comprtation of this motion is difficult; but it will be made eafy by the following approximation: if the moon's mean ditance from the earth be $: 00,000$ parts, and its excentricily TC $5 ; 05$ of thole parts, the right line CB or CD will be fomid $1172 \frac{3}{4}$, and the right lise DF 35°. This right line, at the dutance TC, fabeends an angle to the earth, which the transferring of the centre of the orbit from the place D to F generates in the motion of this centre; and the fame ti, ht tine doubled, in a parallel fituation, at the difance of the upper umbilicus of the moon's crbit from the earth, fubtends the fame angle, gecerated by that trandation in the motion of the umbilicus; and at the dif. tance of the moon from the earth fubtends an angle, which lie fame tranflation gene:ates in the motion of the moon; and which may thorefore be called the fecond equation of the centre.
This equation of a mean diftance of the moon from the earth, is as the fine of the angle contained between the right
line D F, and a right line drawn from the point F to the meon, nearly; a d when greateit, amounts to $2^{\prime} 25^{\prime \prime}$. Now the angle comprehended between the right line DF and a line from the point 1), is found either by fubtracting the angle EDF from the mean anomaly of the moon, or by adidirg the moon's diftance from the fun to the diftance of the moon'y apogee from the apogee of the fun. And as radus is to the dine of the angle thus found, fo is $2^{\prime} 25^{\prime \prime}$ to the fecond equation of the centre; which is to be added, if that fine be lefs than a femicircle; and fubtracted, if greater: dhas we have its longitude in the very $\int_{j} z$ ygies of the luminaries.

If a more accarate computation be required, the moon's place thus found muft be corrected by a fecond variation. Tlie firt and principal variation we have already confidered, and have obferved it to be greateft io the octants. The fecond is rreatelt in the quadrants, and arifes from the different action of the fun on the moon's orbit, according to the different pontion of the moon's apogee to the fun, and is thus conputed; as radius is to the verfed fine of the diftance of the moon's apogee from the fun's perigee, in confequentia, fo is a certain angle P to a fourth proportional. And as radius is to the fine of the moon's diftance from the fun, fo is the fum of this tourth proportional and another angle Q to the fecond variation; which is to be fubtracted, if the inoon's light be increafing; and added, if diminifhing.

Thus sue have the moon's true place in her orbit; and by reduction of this place to the ecliptic, we have the moon's longitude. The angles P and Q are to be determined by obfervation in the mean time, if for P be affumed 2 , and for $Q \mathrm{I}^{\prime}$, we fhall be near the truth.

The refults of computations of this kind are rendered more accurate, in confequence of modern difcoveries; and the labour of them is in a great meafure fuperfeded by the valuable lunar tables, which the aftronomer has now in his poffeftion. We thall therefore refer for thefe tables to the Nantical Almanack, and to Vince's Complete Altronomy, vol. iii.

Moon's Path with refpell to the Sun, Figare of the. The path of the moon is concave towards the fun throughout.

In other fecondary planets, as the fatellites of the fuperior planets, that part of the path of thefe fatellites which is neareft the fun, is convex towarch the fun, and the reft is concave. And we often find in elementary treatifes of altonomy, the moon's path reprefented in the fame manner; that is, as partly convex and partly concave towards the fun: but this is a mittake. For it is to be obferved, in general, that the force which bends the courfe of the fatellite into a curve, when the motion is rcferred to an immoveable plane, is, at the conjunction, the difference of its gravity Lowards the fun, and of its gravity towards the primaryWhen the former presails over the latter, the force that bends the courfe of the fatellice cends towards the fun; and, confequently, the concavity of the path is towards the fun; and this is the cafe of the moon. When the gravity towards the primary exceeds the gravity towards the fun, at the conjunction, then the force which bends the courle of the fatellite tends towards the primary, and therefore towards the oppofition of the fun; confequently the path is there convex toward the fan; and this is the cafe of the fatellites of Jupiter. When thefe two forces -are equal, the path has, at the conjunction, what mathematiciens cail a point of rectitude; in which cale, however, the path is concave towards the fun throughont.

If, indeed, the carth had no annual motion, the moon's motion rund the earth, and her track in open fpace, would
be always the fame. But as the earth and moon move round the fun, the moun's real path in the heavens is very different from her vifble path round the earth; the latter being in a progreffive circle, and the former in a curve of different degrees of concavity, which would be always the fame in the fame parts of the heavens, if the moon performed a com. plete number of lanations in a year, whout any fractions.

Mr. Fergufon bas fuggefted the following familiar idea of the carth's and moon's path. Let a nail in the end of a chariot-wheel reprefent the garth, and a pin in the nave the moon : if the bedy of the chariot be propped up, fo as to keep that wheel from rouching the ground, and the wheel be then turned round by band, the pia will defcribe a circle hoth round the rail, and in the fpace it moves through. Wut if the props be taken away, the horfes put to, and the chariot driven over a piece of ground which is circularly convex; the nail in the axle will defcribe a circular curve, and the pin in the nave will fill defcribe a circle round the progreffive nail in the axle, but not in the fpace through which it moves. In this cafe, the curve defcribed by the nail wil! refemble in miniature as much of the earth's annua! path round the fun, as it defcribes whilt the moon goes as often round the earth as the pin does round the nail; and the cusve defcribed by the nail will have fome refemblance to the moon's path during fo many lunations.

Let us now fuppofe that the radius of the circular curve, defcribed by the nail in the axle, is to the radius of the circle, which the pin in the nave defcribes round the axle, as $337 \frac{1}{2}$ to y; which is the proportion of the radius or femidiansecer of the earth's orbit to that of the moon's; or of the circular curve A 1234567 B , \&xc. (Plate XVII. Aftronomy, fg. 10.) to the little circle a, and then, whilft the progreffive tail defcribes the faid curve from A to E, the pin will go once round the nail, with regard to the centre of its path, and, in fo doing, will defcribe the curve abcde. The former will be a true reprefentation of the earth's path frr one lunation, and the later of the moon's for that time. Here we may fet afide the inequalities of the moon's motion, and alfo the earth's moving round its common centre of gravity, and the moon's: all which, if they were truly copied in this experiment, would not fenfibly alter the figure of the paths delcribed by the nail and pin, even though they fhould rub againf a plain upright furface all the way, and leave their tracks vifible upon it. And if the chariot was driven forward on fuch a convex piece of ground, fo as to turn the wheel feveral times round, the track of the pin in the nave would fili be concave toward the centre of the circular curve defcribed by the pin in the axle; as the moon's path is always concave to the fun in the centre of the earth's annual orbit.

In this diagram, the thickeft curve line A BCDE, with the numeral figures fet to it, reprefents as much of the earth's annual orbit as it defcribes in 32 days from wefl to eaft ; the little circles at a, b, c, d, e, hiew the moon's orbit in due proportion to the carth's; and the fmallest curve $a b \in d e f$ reprefen:s the line of the moon's path in the heavens for 3 a days, accounted from any particular new moon at a.

The fun is fuppofed to be in the centre of the curve A 1234567 B , \&c. and the fmall doted circles upon it reprefent the moon's orbit, of which the radius is in the fame proportion to the earth's path, in this fcheme, that the radus of the moon's orbit, in the heavens, bears to the radius of the earth's annual patio round the fun; that is, as 240,000 to $81,000,000$, or as 1 to $337 \frac{1}{2}$.

When the earth is at A, the new moon is at a; and in the feven days that the earth defcribes the curve 1234567 ,
the meon, in accompanying the earth, defribes the curve Δb; and is in her firft quarter at b, when the earth is at B. As the earth defrribes the curve B891011121314, the moon defcribes the curve $b c$; and is at c, oppofite to the fun, when the earth is at C. Whilht the earth defcribes the curve $\$ 51617 \times 8 \quad 192021 \quad 22$, the moon deferibes the curve $c d$; and is in her third quarter at d, when the earth is at D. And, lafly, whilft the carth defcribes the corve D 23242526372829 , the moon defcribes the curve $d e$; and is again in conjunction at z with the fun, when the earth is at E , between the 2 gth and 30 th day of the moon's age, accounted by the numeral figures from the new moon at A. In defcribing the curve asede, the moon goes round the progreffive earth as really as if the had kept in the dotted circle A , and the earth continued immoveable in the centie of that circle.

And thus we fee, that although the moon goes round the earth in a circle, with refpect to the earth's centre, her real path in the heavens is not very different in appearance from the earth's path. To fhew that the moon's path is concave to the fun, even at the time of change, it is carried on a little farther into a fecond lunation, as to f.

The moon's abfolute motion from her change to her firit quarter, or from a co b, is fo much flower than the earth's, that fhe falls 240,000 miles, (equal to the femi-dianeter of her orbit) behind the earth at her firt quarter in b, when the earth is in B; that is, the falls back a fpace equal to her diltance from the earth. From that time her motion is gradually accelerated to her oppofition or full at c, and then the is come up as far as the earth, laving regained what fue loft in her firft quarter from a to b. From the full to the lait quarter at d, her motion continues accelerated, to as to be juft as far before the earth at d, as fhe was behind it at her firlt quarter in b. But from d to z her motion is fo retarded, that the lofes as much with refpect to the earth, as is equal to her diftance from it, or to the femi-diameter of her orbit; and by that means the comes to c, and is then in conjunction with the fan, as feen from the earth at E. Hence we find, that the moon's abfolute motion is flower than the earth's, from her third quarter to her firft ; and fwifter than the earth's, from her firit quarter to her third: her path being lefs curved than the earth's in the former caie, and more in the latter. Yet it is atill bent the fame way towards the fun; for if we imagine the concavity of the earth's orbit to be mealured by the length of a perpendicular line C_{g}, let down from the earth's place upon the itraight line $b \mathrm{~g} d$, at the full of the moon, and connecting the places of the earth at the end of the moon's firlt and third quarters, that length will be about 640,000 miles; and the moon, when new, only approaching nearer to the fun, by 240,000 miles, than the earth is, the length of the perpeadicular let down from her place, at that time, upon the fame Atraight line, and which thews the concavity of that part of her path, will be about 400,000 miles.

The gravity of the moon towards the fun has been found to be greater, at her conjuncion, than her gravity towards the earth, fo that the point of equal attraction, where thofe two powers would futain each other, falls then between the moon and earth; and fince the quantity of matter in the lisn is almolt 230,000 times as great as the quantity of matter in the earth, and the attraction of each body dimisifhes as the fquare of the diftance from it increafes, it may be eafily found, that this point of equal attraction between the earth and the fun, is about 70,000 times nearer the earth than the moon is at her change : whence fome, and particularly Mr. Baxter, author of Matho, have apprebended, that either the parathax of the fun is gery different
from that which is alligned by altronomers, or that the moon ought neceflarily to abandon the earth; becaufe fhe is confiderably more attracted by the fun than by the earth at that time. This apprehenfion miay be removed cafily, by attending to what has been fhewn by lir Caac Newton, and is illultrated by vulgar experiments concerning the motions of bodies about one another, that are aid acted upon by a third force in the fame direction. Their relative motions not being in the leaft dufturbed by this third force, if it aEt equally upon them in parallel lines; as the relative motions of the fhips in a fleet, carried away by a current, are no way affected by it, if it act equally upon them; or as the rotation of a bullet or bomb, about its axis, while it is projected in the air; or the figure of a drop of faling rain, are not at ali affected by the gravity of the particles of which they are made up towards the carth. The muon is fo near the earth, and both of them fo far from the fun, that the attractive power of the fun may be confidered as equal on both; and, therefore, the moon will continne to circulate round the earth in the fame manner as if the fun did not attract them at all. It is to the inequality of the action of the fun upon the earth and moon, and the want of parallelifm in the directions of thefe actions, only, that we are to alcribe the irregularities in the motion of the moon.

But it may contribute farther towards removing this difficulty to obferve, that if the ablointe velocity of the moon, at the conjunction, was lefs than that which is requifite to carry a body in a circle there around the fun, fuppoling this body to be afted on by the fame force which acts there on the moon, (i.e. by the excefs of her gravity towards the fun, above her gravity towards the earth,) then the moon woald, indeed, abandon the earth. For, in that cale, the moon having lefs velocity than would be neceflary to prevent her from defcending within that circle, the would approach to the fun, and recede from the earth. But though the abfolute velocity of the moon, at the conjunction, be lefs than the velocity of the earth in the annual orbit, yet her gravity towards the fun is fo much diminifhed, by her gravity towards the earth, that her abfolute velocity is till much fuperior to that which is requifite to carry a body in a circle there about the fon, that is acted on by the remain. ing force only. Therefore, from the moment of the conjunction, the moon is carried without fuch a circle receding continually from the fun to greater and greater diftances, till fhe arrives at the oppofition; where, being acted on by the fum of thofe two gravities, and her velocity being now lefs than what is requifite to carry a body in a circle there about the fun, that is acied on by a force equal to that fum, the moon thence begins to approach to the fun again. Thus She recedes from the fun, and approaches to it by turns, and in every month her path hath two apfides, a perihelion at the conjunction, and an aphelion at the oppoftion; between whech the is always carried in a manner fimilar to that in which the primary planers revolve between their apfides. The planet recedes from the fun at the perihehion, becauie its velocity there is greater than that with which a circle could be defcribed about the fun, at the fame diftance, by the fame centripetal force; and approaches towards the fun from the aphelion, becaule its velocity there is lefs than is requifite to carry it in a circle, at that diftanice, about the fun.

If ge fuppole the earth to revolve in a circular orbit round the fun as its centre, and the moon to revolve round the earth in the fame manner; the planes of their orbits to coincide; the diameters of their orbits to be as 340 to 1 ; and the moon to perform 13,368 revulutions to every fingle revolution of the earth; it is eafy to inveltigate the nature

MOON.

and defcription of the curve generated by the centre of the moon; and to determine whether this curve, in one lonation, be asy where convex towards the fun.
Let S (fg.12.) reprefent the fun ; E the earth; E : on are of the orbit of the earth paffed over by its centre, in one luation of the moon; the circumference of the circle EAF $=$ the concentric arc $\mathrm{A} \alpha$; then, forcaure $13.368-1=12,368=$ the number of lunations in the year, or one revolution of the earth, and therefore SA: E A: : $12,368: 1$, , when the moon is in conjunction with the fun, the difance between the fun and moon will be greater than the diftance or radjus SA . Now the curve, defcribed by the centre of the moon, is the fame as that defcribed by a point M (E M being the femi-diameter of the moon's orbit), carried round by the rotation of the circle EAF on the arc $A \alpha$: it is therefore of the cycloidal kind, having a point of inflexion, if every cycloid, defcribed by a point within the generating circle, is inflected, as well upon a circular as upon a rentilinear bafe. To determine which,

Put $\mathrm{S} b \mathrm{~A}$ or $\mathrm{SR}=a, \mathrm{EA}$ or $\varepsilon \mathrm{R}=b, \mathrm{EM}$ or $e m$ $=c, \mathrm{R} m \Rightarrow r, \mathrm{R} d=s$; and let $m \mathrm{C}$ be the radius of curvature at any point m, which, it is evident, muff pais through the point of contact R. Suppofe the point n indefinitely near to m; then, $\mathrm{R} r$ and $\mathrm{R} r$ being the indetinitely fmall contemporary arcs with $m n$, and; confequently, the triangles $\mathrm{R} m$ r and $\mathrm{R}_{n} r$ equal in all refpects; if we confider the faid little arcs R ; and Rr as little right lines perpendicular to the radii er and $S r$, we thall have the $<m \mathrm{R} n=<r \mathrm{R} r=$ (becaufe the angles $\epsilon \mathrm{R} r$ and $\mathrm{S} \mathrm{R} r$, added to either fide of the equation, make it two right angles) $<\mathrm{Rer}+<\mathrm{R} \mathrm{Sr}$. Now $\mathrm{SR}: \mathrm{e} \mathrm{R}::<\mathrm{Rer}$ $:<\mathrm{RS} r$, and $\mathrm{SR}: \mathrm{SR}+\mathrm{Re}::<\mathrm{Rer}: \mathrm{Rer}$ $+<\mathrm{RSr}$, that is; $a: a+b::<\mathrm{Rer}:<m \mathrm{R} n=$ $\frac{a+b}{a}<\mathrm{Re}$. Agair, in any triangle, as $d m r$, if the angles $m d r, m r d$, and $\mathrm{R} m r$, the complement of the obtule angle to two right angles, be indefinitely frall, they will be proportional to the oppolite fides $m r, m d$, and $d r$; that is, $d r: m d::<\mathrm{R} m r:<m r d$; and $d r-m d$: $d r::<\mathrm{R} m r-<m r d:<\mathrm{R} m r$, that is, $m \mathrm{R}: d \mathrm{R}$ $::<\mathrm{R} d r:<\mathrm{R} n r$, or, $r: s:: \frac{3}{2}<\mathrm{Rer}_{\mathrm{e}}:<\mathrm{R} n r=$ $\frac{s}{2 r}<\mathrm{Rer}$. Andagain, $<\mathrm{RC} n:<\mathrm{R} n \mathrm{C}: \mathrm{R} n:$ RC , that is, $<m \mathrm{R} n-<\mathrm{R} n r:<\mathrm{R} n r:: \mathrm{R} m$: R C, or $\left.\overline{a+b}-\frac{s}{2 r} \right\rvert\,<$ Rer: $\frac{s}{2 r}<$ Rer: $r: \mathrm{RC}$ $=\frac{a r s}{2 a r+2 b r-s}$. Confequently, $m \mathrm{R}+\mathrm{R} \mathrm{C}=m \mathrm{C}$
$=\frac{2 a r^{2}+2 b x^{2}}{2 a r+2 b r-a s}=\frac{s^{2}}{r-\frac{a s}{2 a+2 b}}=$ the radius of
curvature at any point m.
Now, it is evident, that, at the point of inflexion, the radius of curvature mult be intinite : or that, on one fide of the faid point, the expreffion for the radius of curvature mult be affrmative, and on the other negative; therefore , * mult be more than $\frac{a s}{2 a+2 b}$ on one fide of the faid point, and on the other lefs; and, confequently, at the point of infiexion, $r=\frac{a s}{2 a+2 . b}$; which, fubfituted for r, makes
$\left.(d m \times m \mathrm{R}=) r s-r^{2}=\frac{2 a b s^{2}+a^{2} s^{2}}{2 a}+2 b\right)^{2}=($ betaule $d m \times m \mathrm{R}=f m \times m a=) b^{2}-e^{2}$; from which equation we have $s=\frac{\sqrt{2 a+2 b} \sqrt{b^{2}-c^{2}}}{\sqrt{2 a b+a^{2}}}$. Or, to fund r; fay $2 a r+2 l y=a s$, or $s=\frac{2 a r+2 b r}{a}$; then $(d m \times$ $m \mathrm{R}=) r s-r^{2}=\frac{a r^{2}+2 b r^{2}}{a}=(f m \times m a=) b^{2}$ $-c^{2}$; which equation gives $r=\sqrt{\frac{\bar{a} b^{2}-a c^{2}}{a+2 b}}$, where the point m becomes a point of inflexion.

Now, as $m \mathrm{R}$ (r) mult, by the nature of the circle, always ber greater than $m a$; that is, as $\sqrt{\frac{a b^{2}-a c^{2}}{a+2 b}}$ mult always be more than $b-c$; and, confequently, $\frac{a b^{2}-a c^{2}}{a+2 b}$ be more than $b=c{ }^{\prime}$, that is, $\frac{a b+a c}{a+2 b} \times \overline{b-c}$ be more thaty $\overline{b-c} \times \overline{b-c}$; therefore, c muft always be more that $\frac{b^{2}}{a+b}$; that is, E M mult be more than a third propertionat to $E S$ and $E A$, in order to have a point of inflexion take place in the curve: but in the prefent cafe, ES, EA, and EM , being as 13.368 .1 , and $\frac{13.368}{340}$, or .039; therefore EM is lefs than the faid third proportional ; and, confequently, the curve $\mathrm{M} m \mu$, generated by the centre of the moon, has not a point of inflexion, or is no where convex towards the fun. See Fergufon's Aftronomy, p. 529, \&c. Maclaurin's Account of Sir Ifaac Newton's Phil. Difc. book iv. ch. 5. p. 336, \&c. 4to. Rowe's Fluxions, p. i2\%, $\& \mathrm{c}$.

Moov, Alfronomy of the. r. To determine the pericd of the moon's revolution round the earth, or the periodical month; and the time between one oppofition and another, or the fynotical month.
Since in the middie of a lunar eclipfe the moon is oppofte to the fun, compute the time between two eclipfes, or oppolitions, between which there is a great interval of time; and divide this by the number of lunations that have paffed in the mean time; the quotient will be the quantity: of the fynodical month. Compute the fun's mean motion, during the time of the fynodical month, and add this to the entire circle defcribed by the moon. Then, as the fum is to 360^{3}, fo is the quantity of the fynodical month to the periodical.

Thus, Copernicus, in the year 1500 , November 6, at twelve at night, obferved an eclipfe of the moonat Rome ; and Auguft 1, 1523, at 4^{\wedge} 25', another at Cracow: hence. the quantity of the fyoodical month is thos determined:

$$
\begin{aligned}
& \text { Obf. } 2 \text { An. } 1523^{\text {d }} 237^{n} 4.25^{\prime} \\
& \text { Obl. I An. } 15003: 102.20 \\
& \text { Interval of time An. } 22^{\mathrm{A}} 292^{\mathrm{h}} 2.5^{\text {f }} \\
& \text { Add the intercalary days } 5 \\
& \text { Exact interval An. } 22^{4} 2.97^{\text {h }} 2.5^{\prime} \\
& \text { or } 11991005^{1}
\end{aligned}
$$

Which, divided by 282 months, elapfed in the mean time, gives the quantity of the fyuodical month $4252 I^{\prime} 9^{\prime \prime} 9^{\prime \prime \prime}$; that is, $29^{n} 1.2^{n} 41^{\prime!}$.

Eroms.

From two other obfervations of eclippes, the one at Cracow, the other at Babylon, the fame author determines more accurately the quantity of the fynodical month to be $425^{2} 4^{\prime} 3^{\prime \prime} 11^{\prime \prime \prime} 9^{\prime \prime \prime \prime}$.
 true fynodical month, which is $29^{4} .12^{\mathrm{h}} 44^{\prime} 3^{\prime \prime}$.
The fun's mean motion in the time $29^{\prime} 6^{\prime} 24^{\prime \prime} \times 8^{\prime \prime \prime}$
The moon's motion $\quad-\quad-\quad 389 \quad 6 \quad 24 \quad 18$
Quantity of the periodical month $27^{\mathrm{d}} 7^{\frac{1}{4}} 43^{\prime} 5^{\prime \prime}$
Hence, x. The quantity of the periodical month being given, by the rule of three we may find the moon's diurnal and horary motion, \&c. And thus may tables of the mean motion of the moon be conftructed.
2. If the fun's mean diurnal motion be fubtracted from the moon's mean diurnal motion, the remainder will give the moon's diurnal motion from the fun : and thus may a table thereof be contructed.
3. Since, in the middle of a total eclipfe, the moon is in the node, if the fun's place be found for that time, and to this be added fix figns, the fum will give the place of that node.
4. From comparing the ancient obfervations with the modern, it appears, that the nodes have a motion, and that they proceed in antecedentia, i. e. from Taurus to 'Aries, from Aries to Pifces, \&c. If, then, to the moon's mean diumnal motion be added the diurnal motion of the nodes, the farme will be the motion of the moon from the node; and thence, by the rule of three, may be found in what time the moon goes 360° from the dragon's head, or in what time fhe goes from, and returns to it : that is, the quantity of the dracontic month.
5. If the motion of the apogee be fubtracted from the meat motion of the moon, the remainder will be the moon's mean motion from the apogee; and thence, by the rule of three, is determined the quantity of the anomalific month. Sce the preceding part of this article.
Tofind the Moon's Age or Charge m-The following canon, in which the twelve numbers anfwer to the twelve months, beginning with January, will ferve for this purpofe.

$$
\text { Janus } 0,2,1,2,3,4,5,6 \text {, }
$$

$8,8,10,10$, thele to the epact fix, The fum, bate 30 , to the month's day add, Or take from 3°, age or change is lad.
The reafon of adding thele numbers to the epact in the feveral months, is becaufe the lunar fynodical months fall fhort of the calendar months ; fo that the epact, which expreffes how much the lunar year falls fhort of the folirir, or calendar year, mult be confidered as continually increaing; and, therefore, to find the new moons, which are the beginnings of the fynodical months, an addition muff be made to the epact in every month, and more and more as the year advances; which additional numbers are called the menitrual epacts. Only nothing is to be added to the epact in January, becamfe the annual epact, together with the day of the month, does then exprefs the true age of the moon : but as January has 3 r days, which is near 2 days wore than a fynodical month, therefore the beginning of the lunar month in February will fall 2 days fooner than it did in January; conifquently 2 is the mentrual epact of February; and then, as Febreary has but 28, or at mot 29 days, which may be accounted x day lefs than a fynodical month, the next lunar month will begin 1 day later in March than it did in February; confequently the menArual epact of March decreafes intead of increafing, and is but x. If from thence you reckon the lunar months to confitt of 30 days and $2 y$ interchangeably, the new moons will fall fo much earlier to the following month than the new moon did in January, as is expreffed by the menfitrual
epacs in the canon, viz. 2 days in April, 3 in May, \&e. until they amount to 11 days at the end of the year, which are then added to the aninal epact.

Table L-Epacts of Years. -

Table II.-Epats of Months.

Mourts.	Epacis.	Monts.	Fpros.
January	$0^{\text {d }} \mathrm{o}^{\text {b }} \mathrm{o}^{\prime}$	July	$3^{4} 19^{\text {h }} 3^{6^{\prime}}$
February	$1{ }^{1} 1186$	${ }^{\text {Aluguf }}$	$\begin{array}{llll}5 & 5 & 52\end{array}$
March	$\begin{array}{llll}29 & 11 & 16\end{array}$	September	${ }_{6}^{6} 1818$
April May	$\begin{array}{rrrr}1 & 9 & 48 \\ 1 & 2 \mathrm{r} & 4\end{array}$	October	$\begin{array}{ccc}7 & 5 & 24 \\ 8 & 16 & 40\end{array}$
June	$\begin{array}{llll} & 3 & 8 & 20\end{array}$	December	$\begin{array}{llll}9 & 3 & 55\end{array}$

In leap years, a day is to be fubtracted from the furo of the epacts, in the months of January and February.

MOON.

Explanation of the Tables.--By Tabies I. and YI. the mean age of the moon, at any given time, may be found to the nearett minute, by adding the epaits of the given year and month, and the propofed time reduced to the meridian of Greenwich. If this fum exceeds a mean lunation, or 29^{6} $12^{17} 44^{\prime}$, deduct it therefrom. The mean time of new moon is found by fubtrating the fum of the epacos of the given year and month, from $29^{\text {a }} 12^{\text {b }} 44^{\text {' }}$; but if greater than that quantity, fubtract it from $59^{d} \mathrm{i}^{\text {b }} 29^{\prime}$, to which add the longitude, in time, if eaf, but fubtract it if weft. The mean time of the preceding, or following full moon, is found by fubtracting, or adding $14^{d} 18^{\mathrm{h}} 22^{1}$; and the quariers, by applying $7^{d} 9^{\text {b }}$ n'. See Epact and Metonic Cricle.

By Table III. the moon's age is found by infpection only, from the year 1800 until 1894 , inclufive; and the method of extending it a few years before or after the limits of the table is obvious.

This table is divided into two parts; the firtt of which contains the months and days, and the other the years, with the monn's age. In this lalat part, N ftands for new moon, and F for full moon. In order, therefore, to find the moon's age on any given day of any given year, within the limsits of the table, find the propored day under the given month, then, on the fame horizontal line, and winder the given year, is the moon's age required. Thus, March 12 th, 1869 , it is a new moon, and on the 18 th of the fame month, in the year $18 \% 8$, it is full moor.

The epact for any given year within the limits of the table, is found at the bottom of the column immediately under the given year. Thus the epact for the year 1850 is 17 . Mackay's Complete Navigator.
To find the Time of the Moon's being in the Meridian, or Soutbing--Multiply her age by 4 , and divide the product by 5 : the quotient gives the hour, and the remainder, muli. plied by 12 , the minute.

The realon of this rule is, that as the moon at the change comes to the fouth with the fan, or at twelve o'clock, aind as there are thirty days, nearly, from one new moon to another, and twenty four hours in a day; therefore fhe lofes one day with another ${ }_{3}^{2}$ thths, or $\frac{t}{t}$ ths of an hour in the time of her fouthing: now the moon's age, a number of days from the change, being multiplied by four, the produet is fo many fifths of anf hour as fhe has loft, which, divided by five, is reduced to hours, and the remainder, if any, multiplied by 12 , will be minutes.

Moon, For the Eclipfes of the, fee Eclipses.

For the Moon's Parallax, fee Parallax.
Moon, Nature and Furniture of the. I. From the various phafes of the moon: from her only fhewing a little part illumined, when following the fun ready to fet; from that part's increafing as fhe recedes from the fun, till at the diftance of 180^{\prime} 'he fhines with a full face : and again wanes as fie re-approaches that luminary, and lofes all her light when fhe meets him: from the lucid parts being conflantly turned towards the welt, while the moon increafes; and towards the eaf when the decreafes; it is evident, that only that part fhines on which the fun's rays fall. And, from the phenomena of eciipfes happensrg when the moon frould fhine with a full face; viz. when the is $\gamma 80^{\circ}$ diftant from the fun; and the darkened parts appearing the fame in all places; it is evident the has no light of her own, but borrows whatever light the has from the fun; for if the did, being globular, we fhould always fee her with a round full orb, like the fun.
2. The moon fometimes difappears in acclear heaven, fo
as not to be difcoverable by the beft glafes; little tars of the fifth and fixth magnitude all the time remaining vifible. This phenomenco Kepler obferved twice, anno 1580 aad 1583 , and Hevelius in $: 620$. Ricciolus, and wher Jefuits at Bulogna, and many people throughout Holland, obferved the like April 14, 1642, yet at Venice and Vienna fhe was all the time confpicuous. December 23, 1703, there waw another total obfcuration. At Arles fhe firit appeared of a yellowifh-brown ; at Avigngn ruddy and tran!parent, as if the fun had Chone through; at Marfeilles, ons part was reddifh, the other very dulky; and, at lengtl, though in a clear fky, the wholly difappeared. Here it is evident that the colours appearing different at the fame time, do not belong to the moon; but they are probably occafioned by our atmofphere, which is varioully difpofed, at different times, for refracting of thefe or thofe coloured rays.
3. The eye, either naked, or armed with a telefcope, fees fome parts in the moon's face darker than others, which are called macule, or /pots. Through the telefcope, white the moon is either increaffing or decreafing, the illuminated parts in the macula appear evenly terminated; but in the bright parts, the boundary of the light appears jagged and uneven, compofed of difimilar arches, convex and concave. (See Plate XVII. Affron. fig. 13.) There are allo obferved lucid part9 difperfed among the darker; and illumined parts are feen beyond the limits of iillumination; other intermediate ones remaining fill in darknefs; and near the maculx, and even in them, are frequently feen fuch lucid feecks. Belide the maculx obferved by the ancients, there are orher variable ones, inviible to the riaked eye, called new maculs, always oppofite to the fun; and which are hence found among thafe parts which are the fooneft illumined in the increafing moon. and in the decreafing moon lofe their light later than the intermediate ones; ruming round, and appearing fometimes longer fometines fmalier.
Hence, I. As all parts are equally illumined by the fui, inafmuch as they are equally diftant from him : if fome appear brishte:, and others darker; fome refect the fun's rays more copioully than others; and therefore they are of different matures. And, 2. Since the boundary of the illumined part is very fmooth and equabie in the macule, their furface mult be fo tco. 3. The parts iflumined by the fun fooner, and deferted fater, than others that are neiarer, are higher than the reft ; i.e. they ftand up above the other furface of the moon. 4. The revy macula anfwer perfecty to the fhadows of terrettrial bodies.
4. Hevelius writes, that he has feveral times found, in ficies perfectly clear, when even flars of the fixth and feversils magnitude were confpicuous, that at the fame alititude of the moon, and the fame elongation from the carth, and with one and the fame excellent telefcope, the moor and its macule do not appear equally lecid, clear and perfpicuous, at all times; but are much brighter, purer, and more diltinct, at one time than another. From the circumftances of the obfervation, it is evident the reafon of this phenomenon is not either in our air, in the tube, in the moon, or in the fpectator's eye; but it muft be looked for in lomething exifting about the moon.
5. Caflini frequentiy obferved Saturn, Jupiter, and the fxxed Atars, when hid by the moon, near her limb, whether the is lumined or dark one, to have their circular figure changed into an oval one ; and in other occuitations he found no alteration of figure at all. In like manner, the fun and moon rifing and fetting in a vaporous horizon, do not appear circular, but eliptical.
Hence, as we know, by fure experience, that the circular figure of the fun and moon is only changed into an elliptica!
tical one by means of the refraction in the vapoury atmo fohere; fome have concluded, that at the time when the circular higure of the fars is thus changed by the moon, there is a denfe matter encompaffing the moon, wherein the rays, emitted from the flars; are refracted; and that, at other tines, when there is no change of figure, this matter is wanting.

This phenomenon is well illuftrated by the following experiment.
2'o the inner bottom of any veffel, either plain, convex, or concave, with wax faften a circle of paper; then pouring in water, that the rays, reflected from the circle in the air, may be refracted before they reach the eye; viewing the circle obliquely, the circular figure will appear changed into an elliplis.
6. The moon, then, is a denfe opaque body, furnihed with mountains and vallies. That the moon is denfe and impervious to the light, has been fhewn: but fome parts Gink below, and others rife above the furface; and that confiderably, inafmuch as they are vifible at fo great a diftance as that of the earth from the moon; whence it has been concluded that in the moon there are high mountains, and very deep vallies. Ricciolus meafured the height of one of the mountains, called St. Catharine, and found it (as he conceived) mine miles high. The method of meafuring the height of the lenar mountains is as follows. Suppole E D (fig. 14.) the mon's diameter, EC D the boundary of light and darknefs, and A the top of a hill in the dark part beginning to be illumined : with a telefcope and micrometer oblerve the proportion of A E, or the diftance of A from the line where the light commences to the diameter E D ; here we have two fides of a rectangled triangle AE, CE ; the quares of which added together give the fquare of the third; whence the femi-diameter C B being fubtracted, leaves A B, the height of the mountain.

Ricciolus, v.gr. found the top of the mount St. Catharine illumined at the diftanes of ${ }_{1}{ }^{1}$ th of the moon's diameter from the confines of light. Suppofing, therefore, C E 8, and A E I , the fquares of the two will be 65 , whofe root is 8062 , the length of A C ; fubtracting, therefore, BC $=8$, the remainder is $A B=0.062$. The moon's femidiameter, therefore; is to the mountain's height as 8 is to 0.062 ; i. e. as 8000 to 62 . Suppofing, therefore, the femidiameter of the moon 1182 Englifh miles, by the rule of three we find the height of the mountain 9 miles.

Galileo takes the diftance of the top of a lunar mountain from the line that divides the illumined part of the dife from that which is in the fhade to be equal to a 20th part of the moon's diameter ; but Hevehus affirms, that it is only the 26 th part of the fame. If we calculate, in the manner above ftated, the height of fuch a mountain, it will be found, in Englifh mealure, according to Galileo, almoft $5 \frac{5}{2}$ miles; and, according to Hevelius, fomewhat more than $3 \frac{1}{7}$ miles, admitting the moon's diameter to be za So miles. The obfervations of Hevelius have been atways held in great efteem; and this is probably the reafon why later aftronomers have not repeated them. M. de la Lande, one of the moft eminent modern aftronomers, concuss in his fentiments. Mr. Ferguion fays, that fome of the mountains of the moon, by comparing their height with her diameter, are found to be three times higher than the highelt hills on our earth; and Keill, in his "A itronomical Lequres," has calculated the height of St. Catharioe's hill, according to the obfervations of Ricciolus, in the manner above ftated, and finds it nise miles. Dr. Herfchel, the mof accurate as well as indutrious obferver of modern times, has directed his attention to this fubject. Heobferves, with regard to the method purfued by Hevelitis, that it will only
avail when the moon'is in her quadratures; for in all other pofitions, the projection of the hills mult appear much horter than it really is. Let S L. M, or slm (fig. 15.) be a line drawn from the fun to the mountain, touchiog the moon at L or l, and the monntain at M or m. Then to an obferver at E or e, the lines L M , or $/ \mathrm{m}$, will not appear of the fatme length, though the mountains fhould be of an equal height; for L M will be projected into $a n$, and $/ m$ into O N . But thefe are the quantities that are taken by the micrometer, when we oblerve a mountain to project from the line of illumination. From the obferved quantity o n, when the moon is not in her quadrature, to find $L M$ we have the following analogy. The triangies $o \mathrm{OL}, r \mathrm{ML}$, are fimilar; therefore, $\mathrm{Lo} 0: \mathrm{L} \mathrm{O}:: \mathrm{L} r: \mathrm{L} M$, or $\frac{\mathrm{LO} \times o n}{\mathrm{Lo}}=\mathrm{L} M$: but L O is the radius of the moon, and $\mathrm{L} r$, or $o n$, is the obferved diftance of the moon's projecion, and $L 0$ is the fine of the angle ROL=oLS, which we may take to be the difance of the fun from the moon, without any material error, and which, therefore, we may find at any given time from an ephemeris.
E.G. On June, 1780 , at feven o'clock, Dc. Herfchel found the angle under which $L \mathrm{M}$, or $\mathrm{L} r$ appeared, to be $40^{\prime \prime} .625$, for a mountain in the fouth-ealt quadrant; and the fun's diftance from the moon was $125^{\circ} 8^{\prime}$, whofe fine ia .8104 ; hence, $40^{\prime \prime} .625$ divided by $.85_{4}$, gives $50^{\prime \prime} .13$, the angle under which LM would appear, if feen directly. Now the femi-diameter of the moon was $16^{\prime} 2^{\prime \prime} .6$, and taking its length to be rogo miles, we have $16^{\prime} 2^{\prime \prime} .6: 50^{\prime \prime} .13$ $::$ sogo $: \mathrm{L} M=56.73$ miles; hence, $\mathrm{M} p=1.47$ miles.

The inftrument ufed by Dr. Herfchel in his obfervations was a Newtonian refiector of fix feet eight inches focal length, to which a micrometer was adapted confilting of two parallel hairs, one of which was moveable by means of a fine fcrew. His obfervations were numerous, and from the refult of all, he concludes, that the height of the lunar mountains in general is greatiy overrated; and that, with the exception of a few, they do not generally exceed half a mile in their perpendicular eievation. Our author had not an opportunity of particularly obferving the three mountains mentioned by Hevelins; nor that which Ricciolus found to project a fixteenth part of the moon's diameter. If Keill, he fays, had calculated the beight of this hill according to the theorem which he has given, he would have found (fuppofing the obfervation to have been made, as he fays, on the fourth day after new moon) that its perpendicular height could not well be lefs than between az and $k 2$ miles. Phil. Tranf. vol. lxx' pt. 2. art: 29.

The heights, \&c. of the hunar mountains being meafurable, attronomers have taken occation to give each its name. Ricciolus, whom mot athers now follow, ditinguifhed them by the names of celebrated attronomers; and by thefe names they are fill expreffed in obfervations of the lunar eclipfes, \&c. (Se-fir. 16.) For an account of the Volcanos in the Moon, fee that article. See allo Lunar Spors,

Atironomers are now generally of opinion, that the moon has no atmofphere of any vifible denfity furrounding her, as we have: for if the had, we could never fee her edge fo well defined as it appears : but there would be a fort of mift or hazinefs around her, which would make the ftars look fainter, when they are feen through it: But obfervation proves, that the Aars which difappear behind the moon retain their full luftre until they feem to touch her very edge, and then they vanifk in a moment. This has been often oblerved by aftronomers, but particularly by Caffui of the ftar γ in the breaft of Virgo, which appears fingle and round to the bare
eye; but through a refracting telefcope of fixteen feet, appears to be two fars fo near together, that the diftance between them feems ta be but equal to one of their apparent diameters. The moon was obferved to pats over them on the 21 ff of April, 1720 , N.S. and as her dark edge drew near to them, it caufed no change in their colour or fituation. At 25 min . 14 fes. paft twelve at night, the moft wefterly of thefe flars was hid by the dark edge of the moon; and in 30 feconds afterward, the moft eafterly ftar was hid : each of them difappearing behind the moon in an inftant, without any preceding diminution of magnitude or brightnefs; which by no means could have been the cafe if there were an atmofphere round the moon; for then, one of the ftars falling obliquely into it before the other, ought by refraction to have fuffered fome change in its colour, or in its diftance from the other ftar, which was not yet entered into the atmofphere. But no fuch alteration could be perceived, though the obfervation was performed with the utmoft attention to that particular ; and was very proper to have made fuch a difcovery. The faint light, which has been feen all around the moon, in total eclipfes of the fun, has been obferved, during the time of darknefs, to have its centre coincident with the centre of the fun; and was therefore much more likely to arife from the atmofphere of the fun, than from that of the moon; for if it had been owing to the latter, its centre mould have gone along with the moon's.

If there were feas in the moon, fhe could have no clouds, rains, nor ftorms, as we have; becaufe fhe has no fuch atmofphere to fupport the vapours which occafion them. And every one knows, that when the moon is above our horizon in the night-time, fhe is vifible, unlefs the clouds of our atmofphere hide her from our view; and all parts of her appear contantly with the fame clear, ferene, and calm aipect. But thofe dark parts of the moon, which were formerly thought to be feas, are now found to be only valtdeep cavities, and places which reflect not the fun's light fo ftrongly as others, having many caverns and pits whofe fhadows fall within them, and are always dark on the fides gext the fun, which demonftrates their being hollow : and moft of thefe pits have little knobs like hillocks ftanding within them, and cafting fhadows alfo; which caufe thefe places to appear darker than others which have fewer, or lefs remarkable caverns. All thefe appearances fhew that there are no feas in the moon; for if there were any, their furfaces would appear fmooth and even, like thofe on the earth.

There being no atmofphere about the moon, the heavens in the day time have the appearance of night to a lunarian who turns his back towards the fun; and when he does, the ftars appear as bright to him as they do in the night to us. For it is entirely owing to our atmofphere that the heavens are bright about us in the day. Some, however, have fufpected that at an occultation of a fixed ftar by the moon, the ftar did not vanifh inflantly; whilft the general opinion has been that which we have above flated. Mr. Schroeter, of Lilienthal, in the duchy of Bremen, has endeavoured to eltablifh the exittence of an atmofphere from the following obfervations, x . He obferved the moon when two days and an half old, in the evening foon after fun-fet, before the dark part was vifible, and continued to obferve it till it became vigible. The two cufps appeared tapering in a very fharp, faint prolongation, each exhibiting its fartheft extremity faintly illuminated by the folar rays, before any part of the dark hemifphere was vifible. Soon after, the whole dark limb appeared illuminated. This prolongation of the cufps beyond the femicircle, he thinks, mult arife from the refraction of the fun's rays by the moon's atmorphere. He com-
putes alfo the height of the atmofphere, which refracts light enough into its dark hemifphere to produce a twilight, more luminous than the light reflected from the earth when the moon is about 32° from the new, to be 1356 Paris feet; and that the greateft height capable of refracting the folar rays is $5 \mathbf{3 7 6}$ feet. 2. At an occultation of Jupiter's fatellites, the third difappeared, after having been about $\mathrm{I}^{\prime \prime}$ or $2^{\prime \prime}$ of time indiftinct; the fourth became indifcernible near the limb; this was not obferved of the other two. Phil. Tranf. vol. 1xxxii. pt. 2. art. 16.
Moon, As to the Influence of the, on the changes of our weather, and the conflitution of the human body, we fall obferve that the vulgar doctrine concerning it is very ancient, and has gained credit among the learned, without fufficient examination; but it is now generally exploded by philofophers, as equally deftitute of all foundation in phyfical theory, and unfupported by any plaufible analogy. The common opinion is, that the lunar influence is exerted at the fyzygies and quadratures, and for three days before and after each of thofe epochs. There are twenty-fout days, therefore, in cach fynodic month, over which the moon at this rate is fuppofed to prefide, and as the whole confifts but of 29 days, $12 \frac{3}{4}$ hours, only $5 \frac{1}{2}$ days are exempt from her pretended dominion. Hence, though the changes of the weather fhould happen to have no connection whatever with the moon's afpects, and they fhould be diftributed in an equal proportion through the whole fynodic month; yet any one who fhall predict, that a change fhall happen on fome one of the twenty-four days affigned, rather than in any of the remaining $\zeta \frac{1}{2}$, will always have the chances 24 to $5 \frac{1}{1}$ in his favour. Men may, therefore, eafily deceive themfelves, efpecially in fo unfettled a climate as ours. Moreover, the writers who treat of the figns of the weather, derive their prognotics from circumitances, which neither argue any real influence of the moon as a caufe, nor any belief of fuch an influence, but are merely indications of the ftate of the air at the time of obfervation: fuch are, the fhape of the horns, the degree and colour of the light, and the number and quality of the luminous circles which fometimes furround the moon, and the circumftances attending their difappearance. (See the Δ soonpsco of Aratus, and the Scholia of Theon.) The vulgar foon began to confider thofe things as caufes, which had been propofed to them only as figns: and the notion of the moon's influence on all terretrial things was confirmed by her manifeft effect upon the ocean. See on this fubject, Phil. Tranf. vol. lxv. part 2. p. 178, \&c.

The famous Dr. Mead was a believer in the influence of the fun and moon on the human body, and publifhed a book to this purpofe, intitled "De Imperio Solis ac Lunæ in Corpore humano:" but this opinion has been exploded by philofophers, as equally unreafonable in itfelf, and contrary to fact. As the moft accurate and fenfible barometer is not affected by the various poficions of the moon, it is not likely that the human body fhould be affected by them. See Lunatic.
Moon, Harvef. It is remarkable, that the moon, during the week in which the is full in harveft, rifes fooner after fun-fetting than fhe does in any other full-moon week in the year. By doing fo, fhe affords an immediate fupply of light after fun-fet, which is very beneficial to the farmers for reaping and gathering in the fruits of the earth: and therefore they diftinguif this full moon from all the others in the year, by calling it the barvef-moon. Mr. Fergufon has given a full accourt of the harvelt-moon in his Aftronomy; the fubflance of which is as follows, in a problem on the common celeftial globe.

Make chalk-marks all round the globe, on the ecliptic, at $12^{\text {t }}$. degrees from each other (beginning at Capricorn) which is equal to the moon's daily mean motion from the fun: then elevate the north pole of the globe to the latitude of any place in Europe; fuppofe London, whofe latitude is $5 \mathrm{t} \frac{2}{2}$ degrees north.

This done, turn the ball of the globe round, weftward, in its frame; and you will hee that different parts of the ecliptic make very different angles with the horizon, as thefe parts rife in the eaft: and therefore, in equal times, very unequal portions of the ecliptic will rife. Abont Pifces and Aries, feven of thefe chalk-marks will rife in little more than two hours, as meafured by the motion of the index on the horary circle: but, about the oppofite figns, Virgo and Libra, the index will go over eight hours in the times that feven marks will rife. The intermediate figns will more or lefs partake of thefe differences as they are more or lefs remote from thole above-mentioned.
Hence it is plain that when the moon is in Pifces and Aries, the difference of her rifing will be little more than two hours in feven days; but in Virgo and Libra it will be eight hours in feven days: and this happens every month of the year, becaufe the moon goes through all the figns of the ecliptic in a month, or rather in 27 days, 8 hours.

The moon is always oppolite to the fun when fhe is full, and the fun is never an Virgo and Libra but in our harveit months; and, therefore, the moon is never full in Pifes and Aries (which are the figns oppofite to Virgo and Libra) but in our harveft months. Confequently, when the moon is about her full in harvelt, fhe rifes with lefs difference of time, or more immediately after fun-fet, than when fle is full in any other month of the year. In our winter, the moon is in Pifces and Aries about the time of her firft quarter, and rifes about noon; but her rifing is not then taken notice of, becaufe the fun is above the horizon.

In fpring the moon is in Pifces and Aries about the time of her change ; and then, as fhe gives no light, and rifes with the fun, her rifing cannot be perceived.

In fummer, the moon is in Pifces and Aries about the time of her latt quarter; and then, as fhe is on the decreafe, and rifes not till midnight, her rifing generally paffes unobferved.

But in harvelt, the moon is full in Pifces and Aries (thefe figns being oppolite to the fun in our atumnal months) and rifes foon after fun-fet for feveral evenings fucceffively; which makes her regular rifing very confpicuous at that time of the year, as it is fo beneficial then to the farmers in afford. ing them an immediate fupply of light after the going down of the fun.

This would always be the cafe if the moon's orbit lay in the plane of the ecliptic. But as the moon moves in an orbit which makes an angle of 5 degrees 18 minutes with the ecliptic, and crofles it only in the two oppofite points called the nodes, her rifing when in Pufces and Aries, will fometimes not differ above an hour and forty minutes through the whole of feven days; and at other times, in the fame two figns, the will differ three hours and a half in the time of her rifing in a week, according to the different pofitions of the nodes witl refpect to thefe figns; which politions are conflantly changing, becaufe the nodes go backward through the whole ecliptic in 18 years and 225 days.

This revolution of the nodes will caule the harveft moons to go through a whole courfe of the moit and lealt beneficial flates with reipect to the farmers every nineteen years. The following table fhews in what years the harvelt moons are lealt benefticial as to the times of their rifing, and in what years mot, from 1807 to 1861 . The columns of years under the letter L, are thofe in which the harveft moons are leaft
of all beneficial, becaufe they fall about the defcending node; and thofe under M are the molt of all beneficial, becaufe they fall about the afcending node. In all the columns from N to S, the harveft moons gradually defcend in the lunat orbit, and rife to lefs heights above the horizon. From S to N , they afcend in the like proportion, and rife to greater heights above the horizon. In both the columns un. der S, the harvelt moons are in the loweft part of the moon's orbit, that is, fartheft fouth of the ecliptic ; and in the columns under N , the reverie. And in both thefe cales, their ridings, though not at the fame time, are nearly the fame with regard to the difference of time, as if the moon's orbit were coincident with the ecliptic.

N				L				S
1807	1808	1809	1810	1811	1812	1813	1814	1815
1826	1827	18:28	1829	1430	1531	14322	1533	1894
1844	18*5	1846	18+7	1848	1849	1830	18.51	1857

Years in which they are noft beneficial.

We may obferve farther, that in fummer with us the full moons are low, and their Aay is fhort above the norizon, when the nights are fhort and we have the lealt occafion for mon-light : in winter they go ligh, and Aay long above the horizon, when the nights are long, and we wan: the greateft quantity of moon-light. Moreover as the fun is above the horizon of the north pole from the zoth of March till the 23 d of September, it is plain that the mocn, when full, being oppofite to the fun, muft be below the horizon during that half of the year. But when the fun is in the iouthern half of the ecliptic, he never rifes to the north pole, during which half of the year, every full moon happens in fome part of the northern half of the ecliptic, which never fets. Confequently, as the polar inhabitants never fee the full moon in fummer, they have her always in the winter, before, at, and after the full, fhining for fourteen of our days and nights. And when the fun is at his greateft depreftion below the horizon, being then in Capricorn, the moon is at her firf quarter in Aries, fuil in Cancer, and at her third quarter in Libra. And as the beginning of Aries is the rifing point of the ecliptic, Cancer the bighe!t, and Libra the fetting point, the moon rifes at her frft quarter in Aries; is molt elevated above the horizon, and full, in Cancer; and fets at the beginning of Libra in her third quarter, having continued vifible for fourteen diurnal rotations of the earth. Thus the poles are fupplied one half of the winter time with conftant moon-light in the fun's abfence; and only lofe fight of the moon from her third to her firit quarter, while fhe gives but very little light, and could be but of little, and fometimes of no fervice to them.

Moon, Acceleration of the. See Acceleration.
Moon-Dial. See Dial.
Moon, Horizontal. See Apparent Magnitude,
Moon, Prime of the. See Phime.
Moon-Eyes, in the Manege. A horfe is faid to have mooneyes when the weaknefs of his eyes increafes or decreafes according to the courfe of the moon; fo that in the wane of the moon his eyes are muddy and troubled, and at new moou they clear up; but atill he is in danger of lofing his eye-fight quite.

